251,317 research outputs found

    Characterization and synthesis of random acceleration vibration specifications

    Get PDF
    Random acceleration vibration specifications for subsystems, i.e. instruments,\ud equipment, are most times based on measurement during acoustic noise tests on system level, i.e. a spacecraft and measured by accelerometers, placed in the neighborhood of the interface between spacecraft and subsystem. Tuned finite element models can be used to predict the random acceleration power spectral densities at other locations than available via the power spectral density measurements of the acceleration. The measured and predicted power spectral densities do represent the modal response characteristics of the system and show many peaks and valleys. The equivalent random acceleration vibration test specification is a smoothed, enveloped, peak-clipped version of the measured and predicted power spectral densities of the acceleration spectrum.\ud The original acceleration vibration spectrum can be characterized by a different number response spectra: Shock Response Spectrum (SRS) , Extreme Response Spectrum (ERS), Vibration Response Spectrum (VRS), and Fatigue Damage Spectrum (FDS). An additional method of non-stationary random vibrations is based on the Rayleigh distribution of peaks. The response spectra represent the responses of series of SDOF systems excited at the base by random acceleration,\ud both in time and frequency domain. The synthesis of equivalent random acceleration vibration specifications can be done in a very structured manner and are more suitable than equivalent random acceleration vibration\ud specifications obtained by simple enveloping. In the synthesis process Miles’ equation plays a dominant role to invert the response spectra into equivalent random acceleration vibration spectra. A procedure is proposed to reduce the number of data point in the response spectra curve by dividing the curve in a numbers of fields. The synthesis to an equivalent random acceleration spectrum is performed on a reduced selected set of data points. The recalculated response\ud spectra curve envelops the original response spectra curves. A real life measured random acceleration spectrum (PSD) with quite a number of peaks and\ud valleys is taken to generate, applying response spectra SRS, ERS, VRS, FDS and the Rayleigh distribution of peaks, equivalent random acceleration vibration specifications. Computations are performed both in time and frequency domain

    Enhancing quantum entropy in vacuum-based quantum random number generator

    Full text link
    Information-theoretically provable unique true random numbers, which cannot be correlated or controlled by an attacker, can be generated based on quantum measurement of vacuum state and universal-hashing randomness extraction. Quantum entropy in the measurements decides the quality and security of the random number generator. At the same time, it directly determine the extraction ratio of true randomness from the raw data, in other words, it affects quantum random numbers generating rate obviously. In this work, considering the effects of classical noise, the best way to enhance quantum entropy in the vacuum-based quantum random number generator is explored in the optimum dynamical analog-digital converter (ADC) range scenario. The influence of classical noise excursion, which may be intrinsic to a system or deliberately induced by an eavesdropper, on the quantum entropy is derived. We propose enhancing local oscillator intensity rather than electrical gain for noise-independent amplification of quadrature fluctuation of vacuum state. Abundant quantum entropy is extractable from the raw data even when classical noise excursion is large. Experimentally, an extraction ratio of true randomness of 85.3% is achieved by finite enhancement of the local oscillator power when classical noise excursions of the raw data is obvious.Comment: 12 pages,8 figure
    • …
    corecore