35,638 research outputs found

    Power measures derived from the sequential query process

    Full text link
    We study a basic sequential model for the discovery of winning coalitions in a simple game, well known from its use in defining the Shapley-Shubik power index. We derive in a uniform way a family of measures of collective and individual power in simple games, and show that, as for the Shapley-Shubik index, they extend naturally to measures for TU-games. In particular, the individual measures include all weighted semivalues. We single out the simplest measure in our family for more investigation, as it is new to the literature as far as we know. Although it is very different from the Shapley value, it is closely related in several ways, and is the natural analogue of the Shapley value under a nonstandard, but natural, definition of simple game. We illustrate this new measure by calculating its values on some standard examples.Comment: 13 pages, to appear in Mathematical Social Science

    KV-match: A Subsequence Matching Approach Supporting Normalization and Time Warping [Extended Version]

    Full text link
    The volume of time series data has exploded due to the popularity of new applications, such as data center management and IoT. Subsequence matching is a fundamental task in mining time series data. All index-based approaches only consider raw subsequence matching (RSM) and do not support subsequence normalization. UCR Suite can deal with normalized subsequence match problem (NSM), but it needs to scan full time series. In this paper, we propose a novel problem, named constrained normalized subsequence matching problem (cNSM), which adds some constraints to NSM problem. The cNSM problem provides a knob to flexibly control the degree of offset shifting and amplitude scaling, which enables users to build the index to process the query. We propose a new index structure, KV-index, and the matching algorithm, KV-match. With a single index, our approach can support both RSM and cNSM problems under either ED or DTW distance. KV-index is a key-value structure, which can be easily implemented on local files or HBase tables. To support the query of arbitrary lengths, we extend KV-match to KV-matchDP_{DP}, which utilizes multiple varied-length indexes to process the query. We conduct extensive experiments on synthetic and real-world datasets. The results verify the effectiveness and efficiency of our approach.Comment: 13 page

    Data Mining the SDSS SkyServer Database

    Full text link
    An earlier paper (Szalay et. al. "Designing and Mining MultiTerabyte Astronomy Archives: The Sloan Digital Sky Survey," ACM SIGMOD 2000) described the Sloan Digital Sky Survey's (SDSS) data management needs by defining twenty database queries and twelve data visualization tasks that a good data management system should support. We built a database and interfaces to support both the query load and also a website for ad-hoc access. This paper reports on the database design, describes the data loading pipeline, and reports on the query implementation and performance. The queries typically translated to a single SQL statement. Most queries run in less than 20 seconds, allowing scientists to interactively explore the database. This paper is an in-depth tour of those queries. Readers should first have studied the companion overview paper Szalay et. al. "The SDSS SkyServer, Public Access to the Sloan Digital Sky Server Data" ACM SIGMOND 2002.Comment: 40 pages, Original source is at http://research.microsoft.com/~gray/Papers/MSR_TR_O2_01_20_queries.do

    Parallel Sort-Based Matching for Data Distribution Management on Shared-Memory Multiprocessors

    Full text link
    In this paper we consider the problem of identifying intersections between two sets of d-dimensional axis-parallel rectangles. This is a common problem that arises in many agent-based simulation studies, and is of central importance in the context of High Level Architecture (HLA), where it is at the core of the Data Distribution Management (DDM) service. Several realizations of the DDM service have been proposed; however, many of them are either inefficient or inherently sequential. These are serious limitations since multicore processors are now ubiquitous, and DDM algorithms -- being CPU-intensive -- could benefit from additional computing power. We propose a parallel version of the Sort-Based Matching algorithm for shared-memory multiprocessors. Sort-Based Matching is one of the most efficient serial algorithms for the DDM problem, but is quite difficult to parallelize due to data dependencies. We describe the algorithm and compute its asymptotic running time; we complete the analysis by assessing its performance and scalability through extensive experiments on two commodity multicore systems based on a dual socket Intel Xeon processor, and a single socket Intel Core i7 processor.Comment: Proceedings of the 21-th ACM/IEEE International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017). Best Paper Award @DS-RT 201

    Collaborative Reuse of Streaming Dataflows in IoT Applications

    Full text link
    Distributed Stream Processing Systems (DSPS) like Apache Storm and Spark Streaming enable composition of continuous dataflows that execute persistently over data streams. They are used by Internet of Things (IoT) applications to analyze sensor data from Smart City cyber-infrastructure, and make active utility management decisions. As the ecosystem of such IoT applications that leverage shared urban sensor streams continue to grow, applications will perform duplicate pre-processing and analytics tasks. This offers the opportunity to collaboratively reuse the outputs of overlapping dataflows, thereby improving the resource efficiency. In this paper, we propose \emph{dataflow reuse algorithms} that given a submitted dataflow, identifies the intersection of reusable tasks and streams from a collection of running dataflows to form a \emph{merged dataflow}. Similar algorithms to unmerge dataflows when they are removed are also proposed. We implement these algorithms for the popular Apache Storm DSPS, and validate their performance and resource savings for 35 synthetic dataflows based on public OPMW workflows with diverse arrival and departure distributions, and on 21 real IoT dataflows from RIoTBench.Comment: To appear in IEEE eScience Conference 201

    Compositional Performance Modelling with the TIPPtool

    Get PDF
    Stochastic process algebras have been proposed as compositional specification formalisms for performance models. In this paper, we describe a tool which aims at realising all beneficial aspects of compositional performance modelling, the TIPPtool. It incorporates methods for compositional specification as well as solution, based on state-of-the-art techniques, and wrapped in a user-friendly graphical front end. Apart from highlighting the general benefits of the tool, we also discuss some lessons learned during development and application of the TIPPtool. A non-trivial model of a real life communication system serves as a case study to illustrate benefits and limitations

    Info-Greedy sequential adaptive compressed sensing

    Full text link
    We present an information-theoretic framework for sequential adaptive compressed sensing, Info-Greedy Sensing, where measurements are chosen to maximize the extracted information conditioned on the previous measurements. We show that the widely used bisection approach is Info-Greedy for a family of kk-sparse signals by connecting compressed sensing and blackbox complexity of sequential query algorithms, and present Info-Greedy algorithms for Gaussian and Gaussian Mixture Model (GMM) signals, as well as ways to design sparse Info-Greedy measurements. Numerical examples demonstrate the good performance of the proposed algorithms using simulated and real data: Info-Greedy Sensing shows significant improvement over random projection for signals with sparse and low-rank covariance matrices, and adaptivity brings robustness when there is a mismatch between the assumed and the true distributions.Comment: Preliminary results presented at Allerton Conference 2014. To appear in IEEE Journal Selected Topics on Signal Processin
    • 

    corecore