32,189 research outputs found

    Circuit exhibits power efficiency greater than 75 percent

    Get PDF
    Variable duty cycle pulser increases circuit power efficiency by more than 75 percent when operating solenoid valves. The pulser provides a low-level holding current after a high-level current has actuated the solenoid valves

    Increasing the power efficiency of an IEEE802.11a power amplifier

    Get PDF

    Maximum Power Efficiency and Criticality in Random Boolean Networks

    Full text link
    Random Boolean networks are models of disordered causal systems that can occur in cells and the biosphere. These are open thermodynamic systems exhibiting a flow of energy that is dissipated at a finite rate. Life does work to acquire more energy, then uses the available energy it has gained to perform more work. It is plausible that natural selection has optimized many biological systems for power efficiency: useful power generated per unit fuel. In this letter we begin to investigate these questions for random Boolean networks using Landauer's erasure principle, which defines a minimum entropy cost for bit erasure. We show that critical Boolean networks maximize available power efficiency, which requires that the system have a finite displacement from equilibrium. Our initial results may extend to more realistic models for cells and ecosystems.Comment: 4 pages RevTeX, 1 figure in .eps format. Comments welcome, v2: minor clarifications added, conclusions unchanged. v3: paper rewritten to clarify it; conclusions unchange

    On the Power Efficiency of Sensory and Ad Hoc Wireless Networks

    Get PDF
    We consider the power efficiency of a communications channel, i.e., the maximum bit rate that can be achieved per unit power (energy rate). For additive white Gaussian noise (AWGN) channels, it is well known that power efficiency is attained in the low signal-to-noise ratio (SNR) regime where capacity is proportional to the transmit power. In this paper, we first show that for a random sensory wireless network with n users (nodes) placed in a domain of fixed area, with probability converging to one as n grows, the power efficiency scales at least by a factor of sqrt n. In other words, each user in a wireless channel with n nodes can support the same communication rate as a single-user system, but by expending only 1/(sqrt n) times the energy. Then we look at a random ad hoc network with n relay nodes and r simultaneous transmitter/receiver pairs located in a domain of fixed area. We show that as long as r ≤ sqrt n, we can achieve a power efficiency that scales by a factor of sqrt n. We also give a description of how to achieve these gains

    A high-efficiency and compact charge pump with charge recycling scheme and finger boost capacitor

    Get PDF
    A 16-phase 8-branch charge pump with finger boost capacitor is proposed to increase the power efficiency. Compared with the standard capacitor, the finger capacitor can significantly reduce the parasitic capacitance. The proposed four-stage charge pump with finger capacitor can achieve 14.2 V output voltage from a 3 V power supply. The finger capacitor can increase the power efficiency of the charge pump to 60.5% and save chip area as well
    • …
    corecore