2 research outputs found

    Power Trading Coordination in Smart Grids Using Dynamic Learning and Coalitional Game Theory

    No full text
    In traditional power distribution models, consumers acquire power from the central distribution unit, while “micro-grids” in a smart power grid can also trade power between themselves. In this paper, we investigate the problem of power trading coordination among such micro-grids. Each micro-grid has a surplus or a deficit quantity of power to transfer or to acquire, respectively. A coalitional game theory based algorithm is devised to form a set of coalitions. The coordination among micro-grids determines the amount of power to transfer over each transmission line in order to serve all micro-grids in demand by the supplier micro-grids and the central distribution unit with the purpose of minimizing the amount of dissipated power during generation and transfer. We propose two dynamic learning processes: one to form a coalition structure and one to provide the formed coalitions with the highest power saving. Numerical results show that dissipated power in the proposed cooperative smart grid is only 10% of that in traditional power distribution networks

    Resource allocation in networks via coalitional games

    Get PDF
    The main goal of this dissertation is to manage resource allocation in network engineering problems and to introduce efficient cooperative algorithms to obtain high performance, ensuring fairness and stability. Specifically, this dissertation introduces new approaches for resource allocation in Orthogonal Frequency Division Multiple Access (OFDMA) wireless networks and in smart power grids by casting the problems to the coalitional game framework and by providing a constructive iterative algorithm based on dynamic learning theory.  Software Engineering (Software)Algorithms and the Foundations of Software technolog
    corecore