23,345 research outputs found

    Low-power direct resistive sensor-to-microcontroller interfaces

    Get PDF
    “© © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”This paper analyzes the energy consumption of direct interface circuits where the data conversion of a resistive sensor is performed by a direct connection to a set of digital ports of a microcontroller (µC). The causes of energy consumption as well as their relation to the measurement specifications in terms of uncertainty are analyzed. This analysis yields a tradeoff between energy consumption and measurement uncertainty, which sets a design procedure focused on achieving the lowest energy consumption for a given uncertainty and a measuring range. Together with this analysis, a novel experimental setup is proposed that allows one to measure the µC’s timer quantization uncertainty. An application example is shown where the design procedure is applied. The experimental results fairly fit the theoretical analysis, yielding only 5 µJ to achieve nine effective number of bits (ENOB) in a measuring range from 1 to 1.38 k. With the same ENOB, the energy is reduced to 1.9 µJ when the measurement limits are changed to 100 and 138 k.Peer ReviewedPostprint (published version

    Measuring dynamic signals with direct sensor-to-microcontroller interfaces applied to a magnetoresistive sensor

    Get PDF
    This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.Postprint (published version

    Power meter for Highly-Distorted Three-Phase Systems

    Get PDF
    This paper describes a low-cost, three-phase power meter, which is based on a fast, specially designed acquisition board coupled to a PC via the PC parallel/printer port or by means of an AT card. The power associated with the fundamental and first harmonics is computed by software that operates in the time domain and employs a sample-weighting procedure that makes the uncertainty related to the asynchronous sampling negligible. The low-cost acquisition board features two 8-bit 1 MHz converters and a local RAM, which decouples the PC clock from the measurement requirements. Hall effect transducers are used for the current channels and fast differential amplifiers for the voltage channels. The fast sampling frequency allows simple antialiasing filters to be employed. Digital filtering is used to reduce the sample number while increasing the resolution. The power uncertainty provided by this arrangement is less then 0.1 % with 2.5 measurements per second when a low-cost 486DX33-based PC is use

    Diamond Detectors for the TOTEM Timing Upgrade

    Full text link
    This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC. The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. After introducing the physics studies that will most profit from the addition of these new detectors, we discuss in detail the optimization and the performance of the first TOF detector installed in the LHC in November 2015.Comment: 26 pages, 18 figures, 2 tables, submitted for publication to JINS

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un

    A monolithic ASIC demonstrator for the Thin Time-of-Flight PET scanner

    Full text link
    Time-of-flight measurement is an important advancement in PET scanners to improve image reconstruction with a lower delivered radiation dose. This article describes the monolithic ASIC for the TT-PET project, a novel idea for a high-precision PET scanner for small animals. The chip uses a SiGe Bi-CMOS process for timing measurements, integrating a fully-depleted pixel matrix with a low-power BJT-based front-end per channel, integrated on the same 100 μm\mu{} m thick die. The target timing resolution is 30 ps RMS for electrons from the conversion of 511 keV photons. A novel synchronization scheme using a patent-pending TDC is used to allow the synchronization of 1.6 million channels across almost 2000 different chips at picosecond-level. A full-featured demonstrator chip with a 3x10 matrix of 500x500 μm2\mu{} m^{2} pixels was produced to validate each block. Its design and experimental results are presented here

    MEG Upgrade Proposal

    Full text link
    We propose the continuation of the MEG experiment to search for the charged lepton flavour violating decay (cLFV) \mu \to e \gamma, based on an upgrade of the experiment, which aims for a sensitivity enhancement of one order of magnitude compared to the final MEG result, down to the 6×10146 \times 10^{-14} level. The key features of this new MEG upgrade are an increased rate capability of all detectors to enable running at the intensity frontier and improved energy, angular and timing resolutions, for both the positron and photon arms of the detector. On the positron-side a new low-mass, single volume, high granularity tracker is envisaged, in combination with a new highly segmented, fast timing counter array, to track positron from a thinner stopping target. The photon-arm, with the largest liquid xenon (LXe) detector in the world, totalling 900 l, will also be improved by increasing the granularity at the incident face, by replacing the current photomultiplier tubes (PMTs) with a larger number of smaller photosensors and optimizing the photosensor layout also on the lateral faces. A new DAQ scheme involving the implementation of a new combined readout board capable of integrating the diverse functions of digitization, trigger capability and splitter functionality into one condensed unit, is also under development. We describe here the status of the MEG experiment, the scientific merits of the upgrade and the experimental methods we plan to use.Comment: A. M. Baldini and T. Mori Spokespersons. Research proposal submitted to the Paul Scherrer Institute Research Committee for Particle Physics at the Ring Cyclotron. 131 Page
    corecore