846,700 research outputs found

    Convex Relaxation of Optimal Power Flow, Part II: Exactness

    Get PDF
    This tutorial summarizes recent advances in the convex relaxation of the optimal power flow (OPF) problem, focusing on structural properties rather than algorithms. Part I presents two power flow models, formulates OPF and their relaxations in each model, and proves equivalence relations among them. Part II presents sufficient conditions under which the convex relaxations are exact.Comment: Citation: IEEE Transactions on Control of Network Systems, June 2014. This is an extended version with Appendex VI that proves the main results in this tutoria

    Convex Relaxation of Optimal Power Flow, Part I: Formulations and Equivalence

    Get PDF
    This tutorial summarizes recent advances in the convex relaxation of the optimal power flow (OPF) problem, focusing on structural properties rather than algorithms. Part I presents two power flow models, formulates OPF and their relaxations in each model, and proves equivalence relations among them. Part II presents sufficient conditions under which the convex relaxations are exact.Comment: Citation: IEEE Transactions on Control of Network Systems, 15(1):15-27, March 2014. This is an extended version with Appendices VIII and IX that provide some mathematical preliminaries and proofs of the main result

    The Structure of Differential Invariants and Differential Cut Elimination

    Full text link
    The biggest challenge in hybrid systems verification is the handling of differential equations. Because computable closed-form solutions only exist for very simple differential equations, proof certificates have been proposed for more scalable verification. Search procedures for these proof certificates are still rather ad-hoc, though, because the problem structure is only understood poorly. We investigate differential invariants, which define an induction principle for differential equations and which can be checked for invariance along a differential equation just by using their differential structure, without having to solve them. We study the structural properties of differential invariants. To analyze trade-offs for proof search complexity, we identify more than a dozen relations between several classes of differential invariants and compare their deductive power. As our main results, we analyze the deductive power of differential cuts and the deductive power of differential invariants with auxiliary differential variables. We refute the differential cut elimination hypothesis and show that, unlike standard cuts, differential cuts are fundamental proof principles that strictly increase the deductive power. We also prove that the deductive power increases further when adding auxiliary differential variables to the dynamics

    The Case Against Powers

    Get PDF
    Powers ontologies are currently enjoying a resurgence. This would be dispiriting news for the moderns; in their eyes, to imbue bodies with powers is to slide back into the scholastic slime from which they helped philosophy crawl. I focus on Descartes’s ‘little souls’ argument, which points to a genuine and, I think persisting, defect in powers theories. The problem is that an Aristotelian power is intrinsic to whatever has it. Once this move is accepted, it becomes very hard to see how humble matter could have such a thing. It is as if each empowered object were possessed of a little soul that directs it and governs its behavior. Instead of attempting to resurrect the Aristotelian power theory, contemporary philosophers would be best served by taking their inspiration from its early modern replacement, devised by John Locke and Robert Boyle. On this view, powers are internal relations, not monadic properties intrinsic to their bearers. This move at once drains away the mysterious directedness of Aristotelian powers and solves the contemporary version of the little souls argument, Neil Williams’s ‘problem of fit.

    The Steinmann Cluster Bootstrap for N=4 Super Yang-Mills Amplitudes

    Full text link
    We review the bootstrap method for constructing six- and seven-particle amplitudes in planar N=4\mathcal{N}=4 super Yang-Mills theory, by exploiting their analytic structure. We focus on two recently discovered properties which greatly simplify this construction at symbol and function level, respectively: the extended Steinmann relations, or equivalently cluster adjacency, and the coaction principle. We then demonstrate their power in determining the six-particle amplitude through six and seven loops in the NMHV and MHV sectors respectively, as well as the symbol of the NMHV seven-particle amplitude to four loops.Comment: 36 pages, 4 figures, 5 tables, 1 ancillary file. Contribution to the proceedings of the Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity" (CORFU2019), 31 August - 25 September 2019, Corfu, Greec
    • 

    corecore