2,137,829 research outputs found

    Comparing the Topological and Electrical Structure of the North American Electric Power Infrastructure

    Full text link
    The topological (graph) structure of complex networks often provides valuable information about the performance and vulnerability of the network. However, there are multiple ways to represent a given network as a graph. Electric power transmission and distribution networks have a topological structure that is straightforward to represent and analyze as a graph. However, simple graph models neglect the comprehensive connections between components that result from Ohm's and Kirchhoff's laws. This paper describes the structure of the three North American electric power interconnections, from the perspective of both topological and electrical connectivity. We compare the simple topology of these networks with that of random (Erdos and Renyi, 1959), preferential-attachment (Barabasi and Albert, 1999) and small-world (Watts and Strogatz, 1998) networks of equivalent sizes and find that power grids differ substantially from these abstract models in degree distribution, clustering, diameter and assortativity, and thus conclude that these topological forms may be misleading as models of power systems. To study the electrical connectivity of power systems, we propose a new method for representing electrical structure using electrical distances rather than geographic connections. Comparisons of these two representations of the North American power networks reveal notable differences between the electrical and topological structure of electric power networks

    Effect of disorder and noise in shaping the dynamics of power grids

    Full text link
    The aim of this paper is to investigate complex dynamic networks which can model high-voltage power grids with renewable, fluctuating energy sources. For this purpose we use the Kuramoto model with inertia to model the network of power plants and consumers. In particular, we analyse the synchronization transition of networks of NN phase oscillators with inertia (rotators) whose natural frequencies are bimodally distributed, corresponding to the distribution of generator and consumer power. First, we start from globally coupled networks whose links are successively diluted, resulting in a random Erd\"os-Renyi network. We focus on the changes in the hysteretic loop while varying inertial mass and dilution. Second, we implement Gaussian white noise describing the randomly fluctuating input power, and investigate its role in shaping the dynamics. Finally, we briefly discuss power grid networks under the impact of both topological disorder and external noise sources.Comment: 7 pages, 6 figure

    Algorithmic Complexity of Power Law Networks

    Full text link
    It was experimentally observed that the majority of real-world networks follow power law degree distribution. The aim of this paper is to study the algorithmic complexity of such "typical" networks. The contribution of this work is twofold. First, we define a deterministic condition for checking whether a graph has a power law degree distribution and experimentally validate it on real-world networks. This definition allows us to derive interesting properties of power law networks. We observe that for exponents of the degree distribution in the range [1,2][1,2] such networks exhibit double power law phenomenon that was observed for several real-world networks. Our observation indicates that this phenomenon could be explained by just pure graph theoretical properties. The second aim of our work is to give a novel theoretical explanation why many algorithms run faster on real-world data than what is predicted by algorithmic worst-case analysis. We show how to exploit the power law degree distribution to design faster algorithms for a number of classical P-time problems including transitive closure, maximum matching, determinant, PageRank and matrix inverse. Moreover, we deal with the problems of counting triangles and finding maximum clique. Previously, it has been only shown that these problems can be solved very efficiently on power law graphs when these graphs are random, e.g., drawn at random from some distribution. However, it is unclear how to relate such a theoretical analysis to real-world graphs, which are fixed. Instead of that, we show that the randomness assumption can be replaced with a simple condition on the degrees of adjacent vertices, which can be used to obtain similar results. As a result, in some range of power law exponents, we are able to solve the maximum clique problem in polynomial time, although in general power law networks the problem is NP-complete

    Geographical threshold graphs with small-world and scale-free properties

    Full text link
    Many real networks are equipped with short diameters, high clustering, and power-law degree distributions. With preferential attachment and network growth, the model by Barabasi and Albert simultaneously reproduces these properties, and geographical versions of growing networks have also been analyzed. However, nongrowing networks with intrinsic vertex weights often explain these features more plausibly, since not all networks are really growing. We propose a geographical nongrowing network model with vertex weights. Edges are assumed to form when a pair of vertices are spatially close and/or have large summed weights. Our model generalizes a variety of models as well as the original nongeographical counterpart, such as the unit disk graph, the Boolean model, and the gravity model, which appear in the contexts of percolation, wire communication, mechanical and solid physics, sociology, economy, and marketing. In appropriate configurations, our model produces small-world networks with power-law degree distributions. We also discuss the relation between geography, power laws in networks, and power laws in general quantities serving as vertex weights.Comment: 26 pages (double-space format, including 4 figures

    ICT networks power consumption

    Get PDF

    5G green cellular networks considering power allocation schemes

    Full text link
    It is important to assess the effect of transmit power allocation schemes on the energy consumption on random cellular networks. The energy efficiency of 5G green cellular networks with average and water-filling power allocation schemes is studied in this paper. Based on the proposed interference and achievable rate model, an energy efficiency model is proposed for MIMO random cellular networks. Furthermore, the energy efficiency with average and water-filling power allocation schemes are presented, respectively. Numerical results indicate that the maximum limits of energy efficiency are always there for MIMO random cellular networks with different intensity ratios of mobile stations (MSs) to base stations (BSs) and channel conditions. Compared with the average power allocation scheme, the water-filling scheme is shown to improve the energy efficiency of MIMO random cellular networks when channel state information (CSI) is attainable for both transmitters and receivers.Comment: 14 pages, 7 figure

    Critical Nodes In Directed Networks

    Full text link
    Critical nodes or "middlemen" have an essential place in both social and economic networks when considering the flow of information and trade. This paper extends the concept of critical nodes to directed networks. We identify strong and weak middlemen. Node contestability is introduced as a form of competition in networks; a duality between uncontested intermediaries and middlemen is established. The brokerage power of middlemen is formally expressed and a general algorithm is constructed to measure the brokerage power of each node from the networks adjacency matrix. Augmentations of the brokerage power measure are discussed to encapsulate relevant centrality measures. We use these concepts to identify and measure middlemen in two empirical socio-economic networks, the elite marriage network of Renaissance Florence and Krackhardt's advice network.Comment: 28 pages, 6 figures, 2 table
    corecore