1,456 research outputs found

    Enabling Quality-Driven Scalable Video Transmission over Multi-User NOMA System

    Full text link
    Recently, non-orthogonal multiple access (NOMA) has been proposed to achieve higher spectral efficiency over conventional orthogonal multiple access. Although it has the potential to meet increasing demands of video services, it is still challenging to provide high performance video streaming. In this research, we investigate, for the first time, a multi-user NOMA system design for video transmission. Various NOMA systems have been proposed for data transmission in terms of throughput or reliability. However, the perceived quality, or the quality-of-experience of users, is more critical for video transmission. Based on this observation, we design a quality-driven scalable video transmission framework with cross-layer support for multi-user NOMA. To enable low complexity multi-user NOMA operations, a novel user grouping strategy is proposed. The key features in the proposed framework include the integration of the quality model for encoded video with the physical layer model for NOMA transmission, and the formulation of multi-user NOMA-based video transmission as a quality-driven power allocation problem. As the problem is non-concave, a global optimal algorithm based on the hidden monotonic property and a suboptimal algorithm with polynomial time complexity are developed. Simulation results show that the proposed multi-user NOMA system outperforms existing schemes in various video delivery scenarios.Comment: 9 pages, 6 figures. This paper has already been accepted by IEEE INFOCOM 201

    Sleep Period Optimization Model For Layered Video Service Delivery Over eMBMS Networks

    Full text link
    Long Term Evolution-Advanced (LTE-A) and the evolved Multimedia Broadcast Multicast System (eMBMS) are the most promising technologies for the delivery of highly bandwidth demanding applications. In this paper we propose a green resource allocation strategy for the delivery of layered video streams to users with different propagation conditions. The goal of the proposed model is to minimize the user energy consumption. That goal is achieved by minimizing the time required by each user to receive the broadcast data via an efficient power transmission allocation model. A key point in our system model is that the reliability of layered video communications is ensured by means of the Random Linear Network Coding (RLNC) approach. Analytical results show that the proposed resource allocation model ensures the desired quality of service constraints, while the user energy footprint is significantly reduced.Comment: Proc. of IEEE ICC 2015, Selected Areas in Communications Symposium - Green Communications Track, to appea
    • …
    corecore