2 research outputs found

    Non-cooperative power control game in D2D underlying networks with variant system conditions

    Get PDF
    In this paper, the problem of power control using a game theoretic approach based on sigmoid cost function is studied for device-to-device (D2D) communications underlying cellular networks. A non-cooperative game, where each D2D transmitter and a cellular user select their own transmit power level independently, is analyzed to minimize their user-serving cost function and achieve a target signal to interference-plus-noise-ratio (SINR) requirement. It is proved analytically that the Nash equilibrium point of the game exists and it is unique under certain constraints. Numerical results verify the analysis and demonstrate the effectiveness of the proposed game with variant system conditions, such as path loss exponents, target SINR, interference caused by the cellular user, pricing coefficients, and sigmoid control parameter

    Power Control in D2D Network Based on Game Theory

    No full text
    Part 2: Cognitive ComputingInternational audienceThis paper considers power control problem based on Nash equilibrium (NE) to eliminate interference in multi-cell device-to-device (D2D) network. The power control problem is modeled as a non-cooperative game model, and a user residual energy factor is introduced in the formulation. Based on the proof of the existence and uniqueness of Nash equilibrium, a distributed iterative game algorithm is proposed to realize power control. Simulation results show that the proposed algorithm can converge to Nash equilibrium quickly, and obtain a better equilibrium income by adjusting the residual energy factor
    corecore