124 research outputs found

    GMPLS energy efficiency scheme for green photonic networks

    Get PDF
    Since its emergence the internet has been a significant part of today's modern living. Defined by its interconnections and routing policies, it has fuelled increased demands for provisioning of new more advanced services that are able to dynamically react to changes within the network. These services however, lead to enormous energy consumption in contrast to a global drive for a greener environment. Hence the existence of an optical infrastructure that complies with the principles of zero-carbon emission is imperative. Subsequently, in this paper, we present an energy model of Generalized Multi-Protocol Label Switching (GMPLS) network for more power efficient Green Photonic Networks. We are proposing a greener network design based on a novel routing algorithm to deliver power reduction through implementation of so called "Hibernation" approach. The scheme includes network topology such as group the nodes configuration, segmentation of the link/ports, and wavelength provisioning via partitioning. The performance evaluations of these energy saving schemes are investigated by including various challenging issue on "greening the internet" and reduces carbon footprint. In addition, to study the impact of wavelength request, blocking probability and power consumption in relation to network load is taken into account. A trade-off is observed between energy per bit, wavelengths offered (Erlang) and blocking probability as a result of the idling nodes

    Calculating the minimum bounds of energy consumption for cloud networks

    Get PDF
    This paper is aiming at facilitating the energy-efficient operation of an integrated optical network and IT infrastructure. In this context we propose an energy-efficient routing algorithm for provisioning of IT services that originate from specific source sites and which need to be executed by suitable IT resources (e. g. data centers). The routing approach followed is anycast, since the requirement for the IT services is the delivery of results, while the exact location of the execution of the job can be freely chosen. In this scenario, energy efficiency is achieved by identifying the least energy consuming IT and network resources required to support the services, enabling the switching off of any unused network and IT resources. Our results show significant energy savings that can reach up to 55% compared to energy-unaware schemes, depending on the granularity with which a data center is able to switch on/off servers

    Reducing Power Consumption in Backbone Networks

    Get PDF
    Abstract—According to several studies, the power consumption of the Internet accounts for up to 10 % of the worldwide energy consumption, and several initiatives are being put into place to reduce the power consumption of the ICT sector in general. To this goal, we propose a novel approach to switch off network nodes and links while still guaranteeing full connectivity and maximum link utilization. After showing that the problem falls in the class of capacitated multi-commodity flow problems, and therefore it is NP-complete, we propose some heuristic algorithms to solve it. Simulation results in a realistic scenario show that it is possible to reduce the number of links and nodes currently used by up to 30 % and 50 % respectively during off-peak hours, while offering the same service quality
    corecore