952 research outputs found

    Sub-channel Assignment, Power Allocation and User Scheduling for Non-Orthogonal Multiple Access Networks

    Full text link
    In this paper, we study the resource allocation and user scheduling problem for a downlink nonorthogonal multiple access network where the base station allocates spectrum and power resources to a set of users. We aim to jointly optimize the sub-channel assignment and power allocation to maximize the weighted total sum-rate while taking into account user fairness. We formulate the sub-channel allocation problem as equivalent to a many-to-many two-sided user-subchannel matching game in which the set of users and sub-channels are considered as two sets of players pursuing their own interests. We then propose a matching algorithm which converges to a two-side exchange stable matching after a limited number of iterations. A joint solution is thus provided to solve the sub-channel assignment and power allocation problems iteratively. Simulation results show that the proposed algorithm greatly outperforms the orthogonal multiple access scheme and a previous non-orthogonal multiple access scheme.Comment: Accepted as a regular paper by IEEE Transactions on Wireless Communication

    Optimization Framework and Graph-Based Approach for Relay-Assisted Bidirectional OFDMA Cellular Networks

    Full text link
    This paper considers a relay-assisted bidirectional cellular network where the base station (BS) communicates with each mobile station (MS) using OFDMA for both uplink and downlink. The goal is to improve the overall system performance by exploring the full potential of the network in various dimensions including user, subcarrier, relay, and bidirectional traffic. In this work, we first introduce a novel three-time-slot time-division duplexing (TDD) transmission protocol. This protocol unifies direct transmission, one-way relaying and network-coded two-way relaying between the BS and each MS. Using the proposed three-time-slot TDD protocol, we then propose an optimization framework for resource allocation to achieve the following gains: cooperative diversity (via relay selection), network coding gain (via bidirectional transmission mode selection), and multiuser diversity (via subcarrier assignment). We formulate the problem as a combinatorial optimization problem, which is NP-complete. To make it more tractable, we adopt a graph-based approach. We first establish the equivalence between the original problem and a maximum weighted clique problem in graph theory. A metaheuristic algorithm based on any colony optimization (ACO) is then employed to find the solution in polynomial time. Simulation results demonstrate that the proposed protocol together with the ACO algorithm significantly enhances the system total throughput.Comment: 27 pages, 8 figures, 2 table

    A Genetic Algorithm-Based Approach to Power Allocation in Rate-Splitting Multiple Access Systems

    Full text link
    We consider the problem of power allocation in Rate-Splitting Multiple Access (RSMA) systems, where messages are split into common and private messages. The common and private streams are jointly transmitted to allow efficient use of the bandwidth, and decoded by Successive Interference Cancellation (SIC) at the receiver. However, the power allocation between streams significantly affects the overall performance. In this letter, we address this problem. We develop a novel algorithm, dubbed Power Allocation in RSMA systems using Genetic Algorithm (PARGA), to allocate the power between streams in RSMA systems in order to maximize the user sum-rate. Simulation results demonstrate the high efficiency of PARGA compared to existing methods.Comment: 5 pages, 5 figure

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    Medium access control protocol design for wireless communications and networks review

    Get PDF
    Medium access control (MAC) protocol design plays a crucial role to increase the performance of wireless communications and networks. The channel access mechanism is provided by MAC layer to share the medium by multiple stations. Different types of wireless networks have different design requirements such as throughput, delay, power consumption, fairness, reliability, and network density, therefore, MAC protocol for these networks must satisfy their requirements. In this work, we proposed two multiplexing methods for modern wireless networks: Massive multiple-input-multiple-output (MIMO) and power domain non-orthogonal multiple access (PD-NOMA). The first research method namely Massive MIMO uses a massive number of antenna elements to improve both spectral efficiency and energy efficiency. On the other hand, the second research method (PD-NOMA) allows multiple non-orthogonal signals to share the same orthogonal resources by allocating different power level for each station. PD-NOMA has a better spectral efficiency over the orthogonal multiple access methods. A review of previous works regarding the MAC design for different wireless networks is classified based on different categories. The main contribution of this research work is to show the importance of the MAC design with added optimal functionalities to improve the spectral and energy efficiencies of the wireless networks

    Performance Analysis and Resource Allocation of STAR-RIS Aided Wireless-Powered NOMA System

    Full text link
    This paper proposes a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided wireless-powered non-orthogonal multiple access (NOMA) system, which includes an access point (AP), a STAR-RIS, and two non-orthogonal users located at both sides of the STAR-RIS. In this system, the users first harvest the radio-frequency energy from the AP in the downlink, then adopt the harvested energy to transmit information to the AP in the uplink concurrently. Two policies are considered for the proposed system. The first one assumes that the time-switching protocol is used in the downlink while the energy-splitting protocol is adopted in the uplink, named TEP. The second one assumes that the energy-splitting protocol is utilized in both the downlink and uplink, named EEP. The outage probability, sum throughput, and average age of information (AoI) of the proposed system with TEP and EEP are investigated over Nakagami-m fading channels. In addition, we also analyze the outage probability, sum throughput, and average AoI of the STAR-RIS aided wireless-powered time-division-multiple-access (TDMA) system. Simulation and numerical results show that the proposed system with TEP and EEP outperforms baseline schemes, and significantly improves sum throughput performance but reduces outage probability and average AoI performance compared to the STAR-RIS aided wireless-powered TDMA system. Furthermore, to maximize the sum throughput and ensure a certain average AoI, we design a genetic-algorithm based time allocation and power allocation (GA-TAPA) algorithm. Simulation results demonstrate that the proposed GA-TAPA method can significantly improve the sum throughput by adaptively adjusting system parameters.Comment: 30 pages, 12 figure

    On the Throughput of Large-but-Finite MIMO Networks using Schedulers

    Full text link
    This paper studies the sum throughput of the {multi-user} multiple-input-single-output (MISO) networks in the cases with large but finite number of transmit antennas and users. Considering continuous and bursty communication scenarios with different users' data request probabilities, we derive quasi-closed-form expressions for the maximum achievable throughput of the networks using optimal schedulers. The results are obtained in various cases with different levels of interference cancellation. Also, we develop an efficient scheduling scheme using genetic algorithms (GAs), and evaluate the effect of different parameters, such as channel/precoding models, number of antennas/users, scheduling costs and power amplifiers' efficiency, on the system performance. Finally, we use the recent results on the achievable rates of finite block-length codes to analyze the system performance in the cases with short packets. As demonstrated, the proposed GA-based scheduler reaches (almost) the same throughput as in the exhaustive search-based optimal scheduler, with substantially less implementation complexity. Moreover, the power amplifiers' inefficiency and the scheduling delay affect the performance of the scheduling-based systems significantly
    corecore