3,227 research outputs found

    Experimental demonstration of a suspended diffractively coupled optical cavity

    Get PDF
    All-reflective optical systems are under consideration for future gravitational wave detector topologies. One approach in proposed designs is to use diffraction gratings as input couplers for Fabry–Perot cavities. We present an experimental demonstration of a fully suspended diffractively coupled cavity and investigate the use of conventional Pound–Drever–Hall length sensing and control techniques to maintain the required operating condition

    Frequency locking to a high-finesse Fabry-Perot cavity of a Frequency doubled Nd:YAG laser used as the optical phase modulator

    Get PDF
    We report on the frequency locking of a frequency doubled Nd:YAG laser to a 45 000 finesse, 87-cm-long, Fabry-Perot cavity using a modified form of the Pound-Drever-Hall technique. Necessary signals, such as light phase modulation and frequency correction feedback, are fed direcly to the infrared pump laser. This is sufficient to achieve a stable locking of the 532 nm visible beam to the cavity, also showing that the doubling process does not degrade laser performances.Comment: submitted to Review of Scientific Instrument

    Sub-kHz-level relative stabilization of an intracavity doubled continuous wave optical parametric oscillator using Pound-Drever-Hall scheme

    Get PDF
    We report the relative frequency stabilization of an intracavity frequency doubled singly resonant optical parametric oscillator on a Fabry-Perot\'etalon. The red/orange radiation produced by the frequency doubling of the intracavity resonant idler is stabilized using the Pound-Drever-Hall locking technique. The relative frequency noise of this orange light, when integrated from 1 Hz to 50 kHz, corresponds to a standard deviation of 700 Hz. The frequency noise of the pump laser is shown experimentally to be transferred to the non resonant signal beam

    Optical fibers with interferometric path length stability by controlled heating for transmission of optical signals and as components in frequency standards

    Full text link
    We present a simple method to stabilize the optical path length of an optical fiber to an accuracy of about 1/100 of the laser wavelength. We study the dynamic response of the path length to modulation of an electrically conductive heater layer of the fiber. The path length is measured against the laser wavelength by use of the Pound-Drever-Hall method; negative feedback is applied via the heater. We apply the method in the context of a cryogenic resonator frequency standard.Comment: Expanded introduction and outlook. 9 pages, 5 figure

    Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy

    Full text link
    We present an experimental technique enabling mechanical-noise free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532nm frequency doubled output from a Nd:YAG laser and an iodine vapour cell. The cell is placed in a traveling-wave Fabry-Perot interferometer (FPI) with counter-propagating pump and probe beams. The FPI is locked using the Pound-Drever-Hall (PDH) technique. Mechanical noise is rejected by differencing pump and probe signals. In addition, this differenced error signal gives a sensitive measure of differential non-linearity within the FPI.Comment: 3 pages, 5 figures, submitted to Optics Letter
    • …
    corecore