3,227 research outputs found
Experimental demonstration of a suspended diffractively coupled optical cavity
All-reflective optical systems are under consideration for future gravitational wave detector topologies. One approach in proposed designs is to use diffraction gratings as input couplers for Fabry–Perot cavities. We present an experimental demonstration of a fully suspended diffractively coupled cavity and investigate the use of conventional Pound–Drever–Hall length sensing and control techniques to maintain the required operating condition
Frequency locking to a high-finesse Fabry-Perot cavity of a Frequency doubled Nd:YAG laser used as the optical phase modulator
We report on the frequency locking of a frequency doubled Nd:YAG laser to a
45 000 finesse, 87-cm-long, Fabry-Perot cavity using a modified form of the
Pound-Drever-Hall technique. Necessary signals, such as light phase modulation
and frequency correction feedback, are fed direcly to the infrared pump laser.
This is sufficient to achieve a stable locking of the 532 nm visible beam to
the cavity, also showing that the doubling process does not degrade laser
performances.Comment: submitted to Review of Scientific Instrument
Sub-kHz-level relative stabilization of an intracavity doubled continuous wave optical parametric oscillator using Pound-Drever-Hall scheme
We report the relative frequency stabilization of an intracavity frequency
doubled singly resonant optical parametric oscillator on a Fabry-Perot\'etalon.
The red/orange radiation produced by the frequency doubling of the intracavity
resonant idler is stabilized using the Pound-Drever-Hall locking technique. The
relative frequency noise of this orange light, when integrated from 1 Hz to 50
kHz, corresponds to a standard deviation of 700 Hz. The frequency noise of the
pump laser is shown experimentally to be transferred to the non resonant signal
beam
Optical fibers with interferometric path length stability by controlled heating for transmission of optical signals and as components in frequency standards
We present a simple method to stabilize the optical path length of an optical
fiber to an accuracy of about 1/100 of the laser wavelength. We study the
dynamic response of the path length to modulation of an electrically conductive
heater layer of the fiber. The path length is measured against the laser
wavelength by use of the Pound-Drever-Hall method; negative feedback is applied
via the heater. We apply the method in the context of a cryogenic resonator
frequency standard.Comment: Expanded introduction and outlook. 9 pages, 5 figure
Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy
We present an experimental technique enabling mechanical-noise free,
cavity-enhanced frequency measurements of an atomic transition and its
hyperfine structure. We employ the 532nm frequency doubled output from a Nd:YAG
laser and an iodine vapour cell. The cell is placed in a traveling-wave
Fabry-Perot interferometer (FPI) with counter-propagating pump and probe beams.
The FPI is locked using the Pound-Drever-Hall (PDH) technique. Mechanical noise
is rejected by differencing pump and probe signals. In addition, this
differenced error signal gives a sensitive measure of differential
non-linearity within the FPI.Comment: 3 pages, 5 figures, submitted to Optics Letter
- …