47,655 research outputs found
Protein glutaminylation is a yeast-specific posttranslational modification of elongation factor 1A
Ribosomal translation factors are fundamental for protein synthesis and highly conserved in all kingdoms of life. The essential eukaryotic elongation factor 1A (eEF1A) delivers aminoacyl tRNAs to the A-site of the translating 80S ribosome. Several studies have revealed that eEF1A is posttranslationally modified. Using MS analysis, site-directed mutagenesis, and X-ray structural data analysis of Saccharomyces cerevisiae eEF1A, we identified a posttranslational modification in which the α amino group of mono-l-glutamine is covalently linked to the side chain of glutamate 45 in eEF1A. The MS analysis suggested that all eEF1A molecules are modified by this glutaminylation and that this posttranslational modification occurs at all stages of yeast growth. The mutational studies revealed that this glutaminylation is not essential for the normal functions of eEF1A in S. cerevisiae. However, eEF1A glutaminylation slightly reduced growth under antibiotic-induced translational stress conditions. Moreover, we identified the same posttranslational modification in eEF1A from Schizosaccharomyces pombe but not in various other eukaryotic organisms tested despite strict conservation of the Glu45 residue among these organisms. We therefore conclude that eEF1A glutaminylation is a yeast-specific posttranslational modification that appears to influence protein translation
Arginylation as a posttranslational protein modification
Arginilacija je tRNA ovisna posttranslacijska modifikacija u kojoj se arginin prenosi s molekule tRNA, najčešće na amino skupinu proteina određenih aminokiselina. Reakciju, koja ne zahtijeva hidrolizu ATP-a, katalizira enzim arginiltransferaza (ATE1). ATE1 je enzim koji je visoko konzerviran u eukariotskim organizmima i ne postoji niti jedna druga arginiltransferaza. Alternativnim splicingom ATE1 nastaje više izooblika enzima kod viših eukariota. U ovom radu je ukratko prikazano zašto je aktivnost tog enzima bitna za vijabilnost stanica u velike većine eukariotskih vrsta te na koje sve fiziološke procese utječe arginilacija i kako se to odražava na život pojedinih organizama. Mnogo toga je još nepoznato u vezi ove posttranslacijske modifikacije, ali možemo zaključiti da je važan biološki regulator.Arginylation is a tRNA-dependent posttranslational modification in which arginine is transfered from tRNA molecule mostly onto a amino group of a specific aminoacid of various proteins. Reaction, that does not require hydrolisis of ATP, is catalayzed by enzime arginiltransferase (ATE1). ATE1 is an enzyme that is highly conserved in eukaryotes and no other arginiltransferase exists, but in higher eukaryotes, there are multiple isoforms of ATE1 that are formed by alternative splicing. This paper briefly shows why is the activity of this enzyme essential for cells viability in vast majority of eukaryotic organisms, on which physiological processeses arginylation has an impact and how it affects physiological processes of individual organisms. A lot is still unknown about this postttransalational modification, but we can conclude that it has an important role as a biological regulator
Endomannosidase undergoes phosphorylation in the Golgi apparatus
Glucose residues from N-linked oligosaccharides are removed by glucosidases I and II in the endoplasmic reticulum (ER) or by the alternate endomannosidase pathway in the Golgi apparatus. Our morphological analysis demonstrates that recombinant rat endomannosidase exhibited a cis- and medial-Golgi localization alike the endogenous enzyme and its ER to Golgi transport is COP II mediated. Recombinant endomannosidase undergoes a posttranslational modification, which is not related to N-or O-glycosylation. A shift in molecular mass of recombinant endomannosidase was observed upon phosphatase digestion but not for ER-retained CHO cell endomannosidase. Furthermore, immunoprecipitation of 35S- and 33P-labeled endomannosidase expressed in CHO-K1 cells suggests that recombinant endomannosidase undergoes phosphorylation. Substitution of the single cytoplasmic threonine residue of rat endomannosidase by either an alanine or valine residue resulted in the same posttranslational modification alike the wild-type enzyme. The subcellular localization and the in vivo activity of the mutant endomannosidase were not affected. Thus, endomannosidase phosphorylation is occurring in luminal sequences. Modification was prevented when endomannosidase was synthesized using reticulocyte lysates in the presence of canine microsomes. Treatment of cells with brefeldin A blocked the posttranslational modification of endomannosidase, suggesting that phosphorylation is occurring in the Golgi apparatus, the residence of endomannosidas
Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover.
Protein turnover through cullin-3 is tightly regulated by posttranslational modifications, the COP9 signalosome, and BTB/POZ-domain proteins that link cullin-3 to specific substrates for ubiquitylation. In this paper, we report how potassium channel tetramerization domain containing 6 (KCTD6) represents a novel substrate adaptor for cullin-3, effectively regulating protein levels of the muscle small ankyrin-1 isoform 5 (sAnk1.5). Binding of sAnk1.5 to KCTD6, and its subsequent turnover is regulated through posttranslational modification by nedd8, ubiquitin, and acetylation of C-terminal lysine residues. The presence of the sAnk1.5 binding partner obscurin, and mutation of lysine residues increased sAnk1.5 protein levels, as did knockdown of KCTD6 in cardiomyocytes. Obscurin knockout muscle displayed reduced sAnk1.5 levels and mislocalization of the sAnk1.5/KCTD6 complex. Scaffolding functions of obscurin may therefore prevent activation of the cullin-mediated protein degradation machinery and ubiquitylation of sAnk1.5 through sequestration of sAnk1.5/KCTD6 at the sarcomeric M-band, away from the Z-disk-associated cullin-3. The interaction of KCTD6 with ankyrin-1 may have implications beyond muscle for hereditary spherocytosis, as KCTD6 is also present in erythrocytes, and erythrocyte ankyrin isoforms contain its mapped minimal binding site
Posttranslational modifications of GLUT4 affect its subcellular localization and translocation
The facilitative glucose transporter type 4 (GLUT4) is expressed in adipose and muscle and plays a vital role in whole body glucose homeostasis. In the absence of insulin, only ~1% of cellular GLUT4 is present at the plasma membrane, with the vast majority localizing to intracellular organelles. GLUT4 is retained intracellularly by continuous trafficking through two inter-related cycles. GLUT4 passes through recycling endosomes, the trans Golgi network and an insulin-sensitive intracellular compartment, termed GLUT4-storage vesicles or GSVs. It is from GSVs that GLUT4 is mobilized to the cell surface in response to insulin, where it increases the rate of glucose uptake into the cell. As with many physiological responses to external stimuli, this regulated trafficking event involves multiple posttranslational modifications. This review outlines the roles of posttranslational modifications of GLUT4 on its function and insulin-regulated trafficking
Comparative genomics of Burkholderia multivorans, a ubiquitous pathogen with a highly conserved genomic structure
The natural environment serves as a reservoir of opportunistic pathogens. A well-established method for studying the epidemiology of such opportunists is multilocus sequence typing, which in many cases has defined strains predisposed to causing infection. Burkholderia multivorans is an important pathogen in people with cystic fibrosis (CF) and its epidemiology suggests that strains are acquired from non-human sources such as the natural environment. This raises the central question of whether the isolation source (CF or environment) or the multilocus sequence type (ST) of B. multivorans better predicts their genomic content and functionality. We identified four pairs of B. multivorans isolates, representing distinct STs and consisting of one CF and one environmental isolate each. All genomes were sequenced using the PacBio SMRT sequencing technology, which resulted in eight high-quality B. multivorans genome assemblies. The present study demonstrated that the genomic structure of the examined B. multivorans STs is highly conserved and that the B. multivorans genomic lineages are defined by their ST. Orthologous protein families were not uniformly distributed among chromosomes, with core orthologs being enriched on the primary chromosome and ST-specific orthologs being enriched on the second and third chromosome. The ST-specific orthologs were enriched in genes involved in defense mechanisms and secondary metabolism, corroborating the strain-specificity of these virulence characteristics. Finally, the same B. multivorans genomic lineages occur in both CF and environmental samples and on different continents, demonstrating their ubiquity and evolutionary persistence
A Novel Peptide-Based SILAC Method to Identify the Posttranslational Modifications Provides Evidence for Unconventional Ubiquitination in the ER-Associated Degradation Pathway.
The endoplasmic reticulum-associated degradation (ERAD) pathway is responsible for disposing misfolded proteins from the endoplasmic reticulum by inducing their ubiquitination and degradation. Ubiquitination is conventionally observed on lysine residues and has been demonstrated on cysteine residues and protein N-termini. Ubiquitination is fundamental to the ERAD process; however, a mutant T-cell receptor α (TCRα) lacking lysine residues is targeted for the degradation by the ERAD pathway. We have shown that ubiquitination of lysine-less TCRα occurs on internal, non-lysine residues and that the same E3 ligase conjugates ubiquitin to TCRα in the presence or absence of lysine residues. Mass-spectrometry indicates that WT-TCRα is ubiquitinated on multiple lysine residues. Recent publications have provided indirect evidence that serine and threonine residues may be modified by ubiquitin. Using a novel peptide-based stable isotope labeling in cell culture (SILAC) approach, we show that specific lysine-less TCRα peptides become modified. In this study, we demonstrate that it is possible to detect both ester and thioester based ubiquitination events, although the exact linkage on lysine-less TCRα remains elusive. These findings demonstrate that SILAC can be used as a tool to identify modified peptides, even those with novel modifications that may not be detected using conventional proteomic work flows or informatics algorithms
- …
