PROTEIN TRANSFER AND ORGANELLE BIOGENESIS

Edited by RATHINDRA C. DAS

Research & Development Biotechnology Products Division Miles Inc. Elkhart, Indiana

PHILLIPS W. ROBBINS

Center for Cancer Research Massachusetts Institute of Technology Cambridge, Massachusetts

ACADEMIC PRESS, INC. Harcourt Brace Jovanovich, Publishers

San Diego New York Berkeley Boston London Sydney Tokyo Toronto COPYRIGHT © 1988 by Academic Press, Inc. all rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical. including photocopy, recording, or any information storage and retrieval system. Without permission in writing from the publisher.

Academic Press, Inc. San Diego, California 92101

United Kingdom Edition published by ACADEMIC PRESS INC. (LONDON) LTD. 24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging-in-Publication Data

Protein transfer and organelle biogenesis.

Includes index. 1. cell metabolism. 2. Cell organelles. 3. Proteins— Metabolism. 4. Protein biosynthesis. 5. Biological transport. I. Das, Rathindra C. II. Robbins, Phillips Wesley, Date. [DNLM: 1. Cells—metabolism. 2. Proteins—metabolism. QU 55 P9690127] QH634.5.P76 1988 574.87'61 87-19554

ISBN 0-12-203460-0 (alk. paper)

 PRINTED IN THE UNITED STATES OF AMERICA

 88
 89
 90
 91
 9
 8
 7
 6
 5
 4
 3
 2
 1

Contents

Contributors
Preface

xi xiii

PART I. TRANSLOCATION

1. Transport of Proteins into and across the Endoplasmic Reticulum Membrane

Eve Perara and Vishwanath R. Lingappa

Ι.	Introduction	3
II.	Historical Background	4
III.	Targeting	8
IV.	Mechanism of Translocation	14
V.	Membrane Assembly of Integral Transmembrane Proteins	22
VI.	Overview	37
	References	39

PART II. MODIFICATION, MATURATION, AND TRANSPORT

2. Role of Carbohydrate in Glycoprotein Traffic and Secretion James B. Parent

Ι.	Introduction	51
II.	Evidence for Intracellular Transport Signals	52
III.	Oligosaccharide Biosynthesis	55
IV.	Role of Carbohydrate in Protein Solubility, Structure,	
	and Stability	62
V.	Evidence for Carbohydrate Transport Signals Using	
	Site-Directed Mutagenesis	65
VI.	Mutations That Alter Glycosylation and Glycoprotein Traffic	66

CONTENTS

VII	Tunicamycin and Glycoprotein Traffic	70
	5 5 1	70
VIII.	Inhibitors of Oligosaccharide Processing and	
	Glycoprotein Traffic	76
IX.	Vertebrate Lectins and Glycoprotein Traffic	82
Χ.	Concluding Remarks	89
	References	90

3. Membrane Insertion and Transport of Viral Glycoproteins: A Mutational Analysis

Eric Hunter

I.	Introduction	109
II.	Genetic Approaches to Viral Glycoprotein Transport	117
III.	Conclusions	145
	References	148

4. Posttranslational Modification during Protein Secretion Kurt W. Runge

Ι.	Introduction	159
II.	Reactions in the Cytoplasm	160
III.	Reactions in the Endoplasmic Reticulum	163
IV.	Protein Modification in the Golgi Apparatus	183
V.	Conclusion	198
	References	199

5. Mannosidases in Mammalian Glycoprotein Processing Kellev W. Moremen and Oscar Touster

I.	Introduction	209
II.	Processing Mannosidases and Multiple Routes	212
III.	Conclusions	233
	References	233

PART III. SORTING AND ORGANELLE ASSEMBLY

6. Biosynthesis and Sorting of Proteins of the Endoplasmic Reticulum

Michael Green and Richard A. Mazzarella

Ι.	Introduction	243
II.	Structure and Sorting of ERp99, an Abundant,	
	Conserved ER Glycoprotein	253
III.	Conclusions and Future Directions	274
	References	280

7. Functional Topology of Golgi Membranes

Becca Fleischer

Ι.	Introduction	289
II.	General Properties of the Golgi Apparatus	290
III.	Topology of Membrane-Bound Functions	293
IV.	Transport Properties of Golgi Membranes	300
V.	Concluding Remarks	311
	References	312

8. Protein Sorting and Biogenesis of the Lysosome-like Vacuole in Yeast

Joel H. Rothman and Tom H. Stevens

I.	Introduction	318
II.	Biosynthesis of Vacuolar Proteins	319
III.	Sorting of Vacuolar Proteins	330
IV.	Endocytosis in Yeast and Its Relationship to Vacuolar	
	Protein Delivery	346
V.	Summary and Conclusions	352
	References	354

9. Transport and Targeting of Lysosomal Enzymes in Dictyostelium discoideum

James A. Cardelli and Randall L. Dimond

I.	Introduction	364
II.	Life History of a Cellular Slime Mold Lysosomal Enzyme	365
III.	Dual Pathways for the Secretion of Lysosomal Enzymes	375
IV.	Genetic Approaches to Dissect Intracellular Transport	
	Pathways	381
V.	Developmental Regulation of the Synthesis, Modification,	
	and Localization of Lysosomal Enzymes	387
VI.	Recombinant DNA Approaches	389
VII.	Summary and Future Perspectives	390
	References	391

10. Organelles of Endocytosis and Exocytosis

John A. Hanover and Robert B. Dickson

I.	Introduction	401
П.	Endocytosis	403
Π.	Exocytosis	431
IV.	Summary and Future Prospects	446
	References	446

11. Endocytosis and Compartmentalization of Lysosomal Enzymes in Normal and Mutant Mammalian Cells: Mannose 6-Phosphate-Dependent Pathways

April R. Robbins

Ι.	In the Beginning	464
Π.	The Recognition Marker	465
III.	The Receptors	476
IV.	Endocytosis	481
V.	The Intracellular Pathway	490
VI.	Junction of the Pathways	504
	References	509

12. Biogenesis of Secretory Vesicles

Hsiao-ping Hsu Moore, Lelio Orci, and George F. Oster

Ι.	Introduction	521
II.	Structure and Function of Secretory Organelles	524
III.	Formation of Secretory Vesicles	532
IV.	Conclusion and Perspectives	554
	References	555

13. Expression of Extracellular Matrixlike Glycoproteins by Macrophages and Other Leukocytes

Arthur M. Mercurio

I.	Introduction	563
II.	Biosynthesis of Extracellular Matrixlike Glycoproteins by	
	Macrophages	566
III.	Functions of Extracellular Matrixlike Glycoproteins in	
	Macrophages and Related Cells	574
IV.	Perspectives	579
	References	580

PART IV. TRANSFER ACROSS BACTERIAL MEMBRANES

14. Synthesis and Export of Lipoproteins in Bacteria Miguel Regue and Henry C. Wu

I.	Introduction	587
II.	Lipoprotein Structure	588
III.	Biosynthesis	589
IV.	Distributions of Lipoproteins among Bacteria	590
V.	Signal Peptidases	592
VI.	Genomic Organization of the lsp Gene	597

VII.	Prolipoprotein Structural Gene Mutants Affecting	
	Modification and/or Processing	598
VIII.	Early Steps in Lipoprotein Secretion	600
IX.	Concluding Remarks	601
	References	602

ix

CONTENTS

15. Protein Secretion across the Outer Membrane of Gram-Negative Bacteria

Anthony P. Pugsley

I.	Introduction	607
II.	Lysis or Secretion	609
III.	Early Stages in the Secretion Pathway	611
IV.	Later Stages in the Secretion Pathway: Secretion Proteins	
	and Targeting Signals	620
V.	Release of Proteins in Vesicles	634
VI.	Activators and Inhibitors of Secreted Proteins	636
VII.	Special Cases	638
VIII.	Concluding Remarks and Perspectives	641
	References	642

PART V. MITOCHONDRIAL ASSEMBLY

16. Genetic Approaches to the Study of Mitochondrial Protein Import

Marjorie C. Brandriss

Ι.	Introduction	655
II.	Isolation of Mutations affecting Mitochondrial Import	659
III.	Conclusions	669
	References	672

17. Synthesis and Assembly of Mitrochondrial Proteins

Donald W. Nicholson and Walter Neupert

Ι.	Introduction	677
Π.	Precursor Proteins	678
III.	Targeting and Sorting Sequences	684
IV.	Receptors	695
V.	Energy Requirements	699
VI.	Cytosolic Cofactors	703
VII.	Translocation Contact Sites	705
VIII.	Proteolytic Processing	709
IX.	Mitochondrial Gene Products	716
Χ.	Assembly and Coordination	718
XI.	Overview	721
	References	729

PART VI. NUCLEAR TRANSPORT

18. Transport of Proteins into the Nucleus

Pamela A. Silver and Michael N. Hall

Ι.	Introduction	747
II.	Nuclear Pore	748
III.	Possible Mechanisms for Specific Nuclear Protein	
	Localization	749
IV.	Nuclear Protein Localization in the Yeast Saccharomyces	
	cerevisiae	753
V.	Conclusion	764
	References	764

PART VII. APPLIED RESEARCH

19. Secretion Research in Industrial Mycology

Ramunas Bigelis and Rathindra C. Das

I.	Introduction	771
II.	Commercially Important Enzymes of Fungal Origin	772
III.	Secretion of Therapeutic Mammalian Polypeptides in	
	Saccharomyces cervisiae	792
IV.	Applied Secretion Research: Prospects for the Future	796
	References	798

Index

809

Contributors

Numbers in parentheses indicate the pages on which the authors' contributions begin.

Ramunas Bigelis (771), Biotechnology Products Division, Miles Inc., Elkhart, Indiana 46515

Marjorie C. Brandriss (655), Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103

James A. Cardelli (364), Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport, Louisiana 71130

Rathindra C. Das (771), Biotechnology Products Division, Miles Inc., Elkhart, Indiana 46515

Robert B. Dickson (401), Medical Breast Cancer Section, NCI, National Institutes of Health. Bethesda, Maryland 20852

Randall L. Dimond (364), Promega-Biotec, Madison, Wisconsin 53711

Becca Fleischer (289), Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235

Michael Green (243), Department of Microbiology, St. Louis University School of Medicine, St. Louis, Missouri 63104

Michael N. Hall (747), Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143

John A. Hanover (401), Laboratory of Biochemistry and Metabolism. NIDDK. National Institutes of Health, Bethesda, Maryland 20892

Eric Hunter (109), Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama 35294

Vishwanath R. Lingappa (3), Departments of Physiology & Medicine, University of California. San Francisco. California 94143-0444

Richard A. Mazzarella (243), Department of Microbiology, St. Louis University School of Medicine, St. Louis, Missouri 63104

Arthur M. Mercurio (563), Laboratory of Cancer Biology, New England Deaconess Hospital, Harvard Medical School, Boston, Massachusetts 02115

Hsiao-ping Hsu Moore (521), Department of Physiology–Anatomy, University of California, Berkeley, California 94720

Kelley W. Moremen (209), Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Walter Neupert (677), Institut für Physiologische Chemie der Universität München, 8000 München 2, Federal Republic of Germany

Donald W. Nicholson (677), Institut für Physiologische Chemie der Universität München, 8000 München 2, Federal Republic of Germany

Lelio Orci (521), Institute of Histology and Embryology, University of Geneva Medical School, 1211 Geneva 4, Switzerland

George F. Oster (521), Departments of Biophysics, Entomology and Zoology, University of California, Berkeley, California 94720

James B. Parent (51), Metabolic Research Branch, Naval Medical Research Institute, Bethesda, Maryland 20814

Eve Perara (3), Departments of Physiology and Medicine, University of California, San Francisco, California 94143

Anthony P. Pugsley (607), Unité de Génétique Moléculaire, Institut Pasteur, Paris 75724, France

Miguel Regue' (587), Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814

April R. Robbins (464), Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892

Joel H. Rothman (318), Institute of Molecular Biology and Department of Biology, University of Oregon, Eugene, Oregon 97403

Kurt W. Runge (159), Department of Genetics, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104

Pamela A. Silver (747), Department of Biology, Princeton University, Princeton, New Jersey 08544

Tom H. Stevens (318), Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403

Oscar Touster (209), Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235

Henry C. Wu (587), Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799

¹Present address: Department of Microbiology, Facultad de Farmacia, Universidad de Barcelona, Barcelona, Spain.

17

Synthesis and Assembly of Mitochondrial Proteins

DONALD W. NICHOLSON AND WALTER NEUPERT

- I. Introduction
- II. Precursor Proteins
 - A. Properties of Precursor Proteins
 - B. Cotranslational versus Posttranslational Transport
- III. Targeting and Sorting Sequences
 - A. Fusion Proteins
 - **B.** Properties of Prepiece Sequences
 - C. The Stop Transport Model
 - D. Heterologous Import
- IV. Receptors
- V. Energy Requirements
- VI. Cytosolic Cofactors
- VII. Translocation Contact Sites
- VIII. Proteolytic Processing
 - IX. Mitochondrial Gene Products
 - X. Assembly and Coordination
 - XI. Overview
 - A. Import Pathway Models
 - **B.** Evolutionary Considerations
 - C. Summary
 - References

I. INTRODUCTION

Eukaryotic cells can perform a variety of metabolic tasks with high efficiency owing to the compartmentalization of functions within cellular organelles. The organelles are delineated by membrane structures and contain specific subsets of proteins related to their role within the cell. The uniqueness of each type of organelle is maintained by processes in

677

the cell which sort and deliver the individual components in a highly specific manner. In this chapter, we discuss the biogenesis of mitochondria and specifically the processes which are involved in the import of proteins into these organelles.

Mitochondria are not synthesized *de novo*. Instead, control of the number of mitochondria within a cell occurs by division and fusion events. In the steady state there is a constant synthesis and turnover of mitochondrial proteins. Mitochondria grow and are maintained by incorporating newly synthesized material into preexisting organelles. The mitochondrion itself has a genetic apparatus which is discrete from that of the rest of the cell, but because of its relatively small size it can only account for a small percentage of the hundreds of mitochondrial proteins. The remainder are imported from the cytoplasm.

Because mitochondria contain two membranes, the organelle can be spatially divided into four distinct compartments: the outer membrane. the inner membrane, the matrix, and the intermembrane space. These too are specialized in function so that imported proteins must be correctly and specifically sorted within the mitochondrion as well. The pathways by which this occurs can be resolved into a number of discrete steps. In general, most imported mitochondrial proteins are synthesized on free ribosomes in the cytosol as precursors containing amino-terminal extensions. They are released into a cytostolic pool and are rapidly taken up by mitochondria. Receptors on the outer surface of the outer mitochondrial membrane seem to be involved in the initial recognition process. Proteins which must be transported to or through the inner membrane do so via translocation contact sites where the inner and outer membranes come close enough together to be spanned simultaneously. This step is energy dependent and specifically requires an electrochemical potential across the inner membrane. Precursor proteins are proteolytically processed to their mature size by a metal ion-dependent matrix peptidase, in some cases in combination with a second proteolytic event. The imported proteins are sometimes modified further by covalent or noncovalent attachment of cofactors. Many proteins are also assembled into larger complexes composed of several different subunits. In this chapter, we shall examine, in chronological order, each individual step which occurs during the import of mitochondrial proteins.

II. PRECURSOR PROTEINS

A. Properties of Precursor Proteins

Proteins which are imported into mitochondria are synthesized as precursors that differ from their mature counterparts in a number of ways: (1) most, but not all, are synthesized as higher molecular weight proteins with amino-terminal peptide extensions which are proteolytically removed during or following import; (ii) a number of precursor proteins are covalently modified when imported while some acquire cofactors which are associated with the protein in a tight but noncovalent manner; (iii) precursor proteins differ in conformation from their mature form; (iv) precursor proteins often aggregate in the cytosol, whereas mature proteins in mitochondria are more likely to be found as monomers, dimers, or as subunits in heterologous complexes; (v) precursor proteins accumulated in the cytosol are far less stable than their correctly imported mature equivalent. Changes which accompany the maturation of imported proteins occur for one of two reasons. Some (i.e., removal of amino-terminal extensions) are connected to the import process, while others (i.e., acquisition of cofactors) are required for functional properties once inside the mitochondrion.

Of the more than 60 different proteins examined to date which must be imported into either the matrix or the inner membrane, almost all contain amino-terminal presequences (for an extensive list see Hay et al., 1984, or Harmey and Neupert, 1985). Possible exceptions of the matrix proteins include 2-isopropylmalate synthase (Gasser et al., 1982a; Hampsey et al., 1983; Beltzer et al., 1986), extramitochondrially expressed yeast bI4 maturase (Banroques et al., 1987), and 3-oxoacyl-CoA thiolase from rat (Arakawa et al., 1987), none of which appear to contain an amino-terminal extension. Some proteins of the inner membrane are known to be imported in their mature size, namely, the ADP/ATP carrier (Zimmermann et al., 1979b; Hatalová and Kolarov, 1983), the uncoupling protein of brown adipose tissue (Freeman et al., 1983; Ricquier et al., 1983; Bouillaud et al., 1986; Ridley et al., 1986), two subunits (14 and 11 kDa) of the bc1 complex (Teintze et al., 1982; van Loon et al., 1983c; Maarse and Grivell, 1987), the ubiquinone-binding protein of the bovine bc_1 complex (Nishikimi et al., 1986), and sweet potato cytochrome oxidase subunit Vc (Nakagawa et al., 1987). Proteins which are imported into the intermembrane space seem to be divided in this regard. Some, like precursors to cytochrome c peroxidase (Maccecchini et al., 1979b; Reid et al., 1982), cytochrome b₂ (Reid et al., 1982; Daum et al., 1982b; Gasser et al., 1982b), and sulfite oxidase (Mihara et al., 1982b) carry amino-terminal extensions, while others, like cytochrome c (Korb and Neupert, 1978; Zimmermann et al., 1979a; Matsuura et al., 1981) and adenylate kinase (Watanabe and Kubo, 1982), do not.

Although only a few of the proteins which are imported to the outer membrane have been examined, none appears to be synthesized as a higher molecular weight precursor. These include the channel-forming porin protein (Freitag *et al.*, 1982; Mihara *et al.*, 1982a; Gasser & Schatz, 1983) and three outer membrane proteins of unknown function (70, 45, and 14 kDa; Gasser and Schatz, 1983). One possible exception is a 35 kDa protein from rat liver mitochondria (Shore *et al.*, 1981) which appears to migrate on sodium dodecyl sulfate-polyacrylamide gels as a precursor of slightly greater molecular size. Whether this represents a precursor protein containing a peptide extension or is a gel artifact is not entirely clear and will require sequencing data to verify.

The trend that emerges is that the deeper into the mitochondrion a protein must be imported, the more likely it is to be synthesized as a precursor of higher molecular weight. As will be discussed in the following section, the amino-terminal prepiece carries targeting information which is necessary to direct imported proteins to their correct intramitochondrial location. In addition, the prepieces, which are generally hydrophilic, confer different solubility properties on the precursor proteins that may allow for their transfer through the cytosol and are important for subsequent import.

While proteolytic processing is the most prevalent covalent modification of imported mitochondrial proteins, there are a number of other changes which occur in many proteins during or following import. For example, protoheme is covalently attached to cytochromes c and c_1 via cysteine residues in the corresponding apoproteins. Iron-sulfur centers (nonheme iron) are constructed in subunits of complexes I. II. and III of the respiratory chain, again via cysteine residues. In addition, many mitochondrial proteins are modified by tight but noncovalent bonding of coenzymes and cofactors (i.e., NAD, FAD, heme a and b and metal ions such as Cu). These proteins are predominantly constituents of the respiratory chain, and the cofactors which are associated with them are primarily involved in their unique roles as electron carriers. In some cases, however, such modifications also appear to be important for events in the import pathway. Covalent attachment of heme to apocytochrome c (holocytochrome c lacking heme), for instance, initiates conformational changes along the polypeptide chain which pull the protein through the outer membrane to its functional location in the intermembrane space (Hennig and Neupert, 1981; Nicholson *et al.*, 1987). Cytochrome c_1 is proteolytically processed in two distinct steps, the second of which has been suggested to be preceded by covalent attachment of the heme to the intermediate size apoprotein (Gasser et al., 1982b; Ohashi et al., 1982). Likewise, the second processing step of the Fe/S protein of the bc_1 complex may be dependent on formation of the Fe/S cluster (F.-U. Hartl and W. Neupert, unpublished).

Precursor proteins are also distinguishable from their mature counterparts in conformational arrangement. Apocytochrome c (prepared by chemical removal of the heme group from holocytochrome c, then renatured to an import-competent form) shows a nearly featureless circular dichroism (CD) pattern. Following interaction with negatively charged lipids in model membranes, which is believed to represent the first event in its import into mitochondria, up to $35\% \alpha$ -helical structure is expressed (Rietveld *et al.*, 1985). The disordered structure of the precursor cytochrome c is folded into a highly ordered stable conformation when heme is attached to form holocytochrome c (Fisher *et al.*, 1973). The difference between precursor and mature forms of cytochrome c is thus dependent on events occurring during its import, namely, interactions with phospholipids and covalent attachment of heme. These conformational changes can be detected *in vitro* with differential antibodies raised against apo- and holocytochrome c which do not cross-react (Korb and Neupert, 1978) or by differential proteolytic sensitivity in solution (Basile *et al.*, 1980).

The precursor to the ADP/ATP carrier does not bind carboxyatractyloside whereas the mature form does. This reflects conformational differences in the proteins which can be distinguished by their binding properties to columns of hydroxylapatite in the presence of carboxyatractyloside. *In vitro* imported and correctly assembled ADP/ATP carrier, when solubilized from mitochondria with detergent, behaves like authentic mature ADP/ATP carrier and passes through these columns while the precursor protein does not (Zimmermann and Neupert, 1980; Schleyer and Neupert, 1984). Since ADP/ATP carrier is not proteolytically processed during import, the binding properties to hydroxylapatite serve as useful criteria for establishing whether correct import and assembly has occurred. Such criteria are important for determining whether a protein imported *in vitro* acquires the properties of the mature protein *in vivo*. In some cases, for example, for proteins which are not proteolytically processed, import can only be studied by following these changes.

Precursor conformation is important for import. For example, although CD spectra for apocytochrome c show no detectable secondary structure (Rietveld *et al.*, 1985), binding of the protein to mitochondria is sensitive to denaturation by a single freeze-thaw cycle (H. Köhler and W. Neupert, unpublished). Similarly, the apocytochrome c produced by a mutant of *Neurospora crassa*, in which the carboxy-terminus is 19 amino acids longer than wild type apocytochrome c (the final 27 amino acids being of an unrelated sequence), cannot bind or be imported into mitochondria, most likely because of conformational perturbation (Stuart *et al.*, 1987). On the other hand, the import of a fusion protein containing mouse dihydrofolate reductase linked to the presequence of cytochrome oxidase IV can be blocked by methotrexate, which stabilizes the folding of the dihydrofolate reductase moiety. In this case, the protein must be at

least partially unfolded to be imported into mitochondria (Eilers and Schatz, 1986). Recent evidence indicates that most precursor proteins are maintained in, or "defolded" into, an import-competent conformation by the hydrolysis of nucleoside triphosphates (Pfanner and Neupert, 1986; Pfanner *et al.*, 1987; see Section V).

Most newly synthesized precursor proteins tend to aggregate. Though this has not been well characterized in vivo, it is frequently observed in vitro in either homologous or heterologous (i.e., reticulocyte lysate) translation systems. The ADP/ATP carrier, for example, is present in soluble complexes with apparent molecular weights of 120K and 500K (Zimmermann and Neupert, 1980). Aggregation has also been demonstrated for ATPase IX (Schmidt et al., 1983b) and for cytochrome oxidase V (Neupert and Schatz, 1981). In all of these cases it is not clear whether aggregation occurs as homo- or heterooligomers. The precursor to rat ornithine carbamovltransferase is transported to mitochondria as a 5 S complex (approximately 90 kDa) containing an unidentified import factor (Argan and Shore, 1985). Similarly, the import of the F_1 ATPase β subunit into yeast mitochondria is dependent on a cytosolic factor believed to be a 40 kDa protein which binds to the precursor proteins and enables their correct association with mitochondria (Ohta and Schatz, 1984). These last two examples suggest that aggregation may occur in a heterooligomeric fashion for some imported proteins. On the other hand, the precursor to rat mitochondrial fumarase (fumarate hydratase) was reported to form homooligomeric aggregates containing six to eight molecules (Ono et al., 1985).

Beside the nonspecific interaction of proteins in solution, aggregation of precursor proteins may occur for specific reasons as well. Since many imported mitochondrial proteins have a membrane localization and are therefore at least partially hydrophobic, there probably exists some means for disguising these parts of the molecule and allowing their solubility in the cytosol. The amino-terminal prepiece may confer some solubility in aqueous environments, while aggregation of precursor proteins. presumably via their hydrophobic domains, may also contribute in this respect. The best example of this is ATPase subunit IX [proteolipid or dicvclohexvlcarbodiimide (DCCD)-binding protein], one of the most hydrophobic proteins known. It contains a long polar prepiece (66 amino acids in Neurospora crassa) that accounts for the solubility of the highly hydrophobic mature sequence (81 amino acids) in aqueous environments (Viebrock et al., 1982). The protein also forms aggregates, perhaps to further aid its solubility in the cytosol. Cytochrome c, on the other hand, is a soluble protein of the intermembrane space which is not imported with a prepiece and behaves as a monomer or dimer in solution (H. Köhler and W. Neupert, unpublished). Another possible role of aggregation is that it is required for import-competent transport and binding of precursors to mitochondria (Section VI).

Once precursor proteins are synthesized, they are rapidly cleared from the cytosol and imported into mitochondria. Precursors can be accumulated *in vivo* by growing cells in the presence of uncouplers of oxidative phosphorylation. Under these conditions they cannot be imported and are pooled in the cytosol. In contrast to the relative stability of mature mitochondrial proteins, the accumulated precursors (in general) are rapidly degraded. For example, yeast cells grown to early exponential phase and then treated with the uncoupler carbonyl cyanide N-chlorophenylhydrazone (CCCP) accumulated large amounts of some mitochondrial precursor proteins (Reid and Schatz, 1982a). In pulse-labeling experiments, the proteins were degraded at different rates. The precursor of cytochrome c_1 was unstable and was degraded with a half-life of about 10 min. On the other hand, the precursor to F_1 ATPase β subunit was more stable and was degraded with a half-life of 50 min. In similar experiments, the precursor of aspartate aminotransferase, accumulated in chick embryo fibroblast cultures treated with CCCP, was degraded with a half-life of about 5 min (Jaussi et al., 1982), and the precursor of carbamoyl-phosphate synthase in rat liver explants, in which proteolytic processing was blocked, was degraded with a half-life of $2-3 \min$ (Raymond and Shore, 1981). The apparent relative stability comparing precursor with mature proteins is probably also related to the normal subcellular location of the proteins (i.e., cytosol versus mitochondria) and the degradative processes that exist there.

Maturation of imported mitochondrial proteins occurs within the mitochondrion itself and not in the cytosol immediately following synthesis. This occurs in this sequence for two reasons: (1) many maturation events are involved in the import pathway itself and/or can only take place after certain import steps have occurred, and (2) development of functional characteristics within the mitochondrion is consistent with the theme of compartmentation of processes in eukaryotic cells.

B. Cotranslational versus Posttranslational Transport

Two mechanisms exist in eukaryotic cells by which proteins may be synthesized and transported across biological membranes. In cotranslational transport, synthesis begins on soluble cytoplasmic polysomes. As the nascent polypeptide chain appears from the ribosome it is directed,

with the accompanying polysome, to the target membrane and is simultaneously inserted into or through the membrane as chain elongation continues. Cotranslational import is the primary means by which proteins are transported across the membranes of the endoplasmic reticulum. It appears that in this case the cotranslational nature, probably with a few exceptions, is obligatory (i.e., a completed polypeptide chain can never enter the transport pathway). It is likely that the polypeptide chain otherwise folds in such a way that it is transport incompetent. The function of the signal recognition particle and docking protein is in arrest and dearrest of the elongation process to guarantee that the nascent polypeptide is kept in a translocation competent state for a sufficient period of time. In posttranslational transport, protein synthesis also begins on soluble cytoplasmic polysomes; however, complete polypeptide synthesis and release into the cytosol occurs before transport into or across membranes begins. Posttranslational import is the mechanism predominant in mitochondria. chloroplasts, microbodies, and probably nuclei. In mitochondria, import may occur with some cotranslational characteristics, though it is clearly not an obligatory process.

In cotranslational compared to posttranslational import, the way in which organelle targeting information is processed is different. For example, in the mechanism for microsomal targeting, the signal recognition particle and docking protein serve as common components for most proteins destined for the endoplasmic reticulum (ER). On the other hand, targeting information for proteins which are posttranslationally transported must be self-contained.

Import of mitochondrial proteins can occur posttranslationally, though early evidence pointed toward a cotranslational mechanism. Cytoplasmic 80 S ribosomes were coisolated with purified yeast mitochondria (Kellems and Butow, 1972). These ribosomes were tightly bound to mitochondria, and only one-third could be released by incubation at high ionic strength. The remaining two-thirds could only be released when their nascent polypeptide chains were dissociated from the ribosome with puromycin (Kellems et al., 1974), suggesting that the ribosomes were anchored via the newly synthesized nascent polypeptide chain which was presumably undergoing cotranslational (vectorial) transport. Furthermore, the mitochondria-associated ribosomes were enriched in mRNAs coding for mitochondrial proteins. When yeast mitochondria were isolated with their accompanying cytoplasmic ribosomes and placed in a readout system to complete polypeptide chain synthesis, over 80% of the products remained associated with the mitochondria and were imported to a location not accessible to externally added proteases (Ades and Butow, 1980a,b). The distribution of total message for mitochondrial proteins, however, was not exclusively associated with these mitochondria-bound ribosomes. Although the mRNA from mitochondria-bound ribosomes was enriched for mitochondrial proteins, indicating that the association was specific, not all mitochondrial proteins were preferentially synthesized on them (Suissa and Schatz, 1982). For example, while 60% of the translatable mRNA for F_1 ATPase β subunit or cytochrome *c* peroxidase was associated with mitochondria-bound polysomes, more than 95% of the message for cytochrome oxidase V or VI and porin was associated with free polysomes. In no case was the translatable message exclusively associated with mitochondria-bound polysomes. This suggested that cotranslational import was not necessarily the transport mechanism used by all imported mitochondrial proteins.

Evidence for posttranslational import of mitochondrial proteins came from studies both *in vivo* and *in vitro*:

1. Extramitochondrial pools of a number of mitochondrial proteins have been detected in pulse-labeling experiments *in vivo*. The appearance of label in mitochondrial proteins showed a lag compared to total cellular protein in *Neurospora crassa* (Hallermayer *et al.*, 1977). The labeled mitochondrial proteins first appeared in a cytosolic pool and then in mitochondria. Similarly, in yeast, mitochondrial precursor proteins first appeared in a cytosolic pool and were then subsequently imported into mitochondria and converted to their mature forms (Reid and Schatz, 1982b; Schatz, 1979).

2. Posttranslational import in the absence of protein synthesis has been demonstrated both *in vivo* and *in vitro*. When protein synthesis was blocked with cycloheximide immediately following pulse-labeling *in vivo*, the precursor pool of mitochondrial proteins in the cytosol decreased with concomitant posttranslational uptake by mitochondria and conversion to the mature forms during the subsequent chase (Hallermayer *et al.*, 1977; Schatz, 1979; Reid and Schatz, 1982b; Teintze *et al.*, 1982). Similarly, mitochondrial precursor proteins which were accumulated *in vivo* by growing cells in the presence of CCCP could be subsequently chased into mitochondria by removing the inhibitory effects of CCCP with 2-mercaptoethanol (Reid and Schatz, 1982a,b) or cysteamine (Jaussi *et al.*, 1982). This too was unaffected by the presence of cycloheximide and therefore occurred posttranslationally.

3. Perhaps the most convincing evidence that transport is possible in the absence of protein synthesis comes from *in vitro* studies where translation systems were programmed with poly(A)-containing RNA to synthe-

size precursor proteins. If further translation following synthesis was blocked by the addition of cycloheximide or if ribosomes were removed by centrifugation and the resulting supernatants incubated with isolated mitochondria, the precursor proteins were rapidly imported into mitochondria and processed to their mature form (Harmey *et al.*, 1977; Korb and Neupert, 1978; Maccecchini *et al.*, 1979a; Zimmermann and Neupert, 1980). The same effect is observed regardless of whether a heterologous (i.e., reticulocyte lysate) or homologous (from cell cytosol) system is used. Posttranslational transport has been demonstrated *in vitro* for all imported mitochondrial proteins studied so far and in many cases *in vivo* as well.

In mitochondria, protein transport normally occurs posttranslationally although some cotranslational import (which is clearly not an obligatory process) may occur as a consequence of the amino-terminal targeting prepiece being exposed before complete polypeptide synthesis is finished. The prepiece might then initiate the import process before chain elongation is complete. Whether this actually occurs *in vivo* is not clear since the early experiments with mitochondria-bound ribosomes did not distinguish whether the nascent polypeptide chains were concomitantly transported with translation or transported only after complete synthesis. In any case, the enrichment of mRNAs for mitochondrial proteins in mitochondriabound ribosomes has provided a useful means for isolating and screening for genes for imported proteins. Clones for 16 different genes of imported yeast mitochondrial proteins were identified by selective hybridization to these enriched mRNAs (Suissa *et al.*, 1984).

III. TARGETING AND SORTING SEQUENCES

The intracellular sorting of proteins synthesized on cytoplasmic polysomes is a fairly specific process. The signals which direct these events are contained within the newly synthesized protein itself. In addition, components of the target organelle, such as receptors, recognize these signals and facilitate import and sorting.

A. Fusion Proteins

Delineation of the exact regions in precursor proteins which are responsible for mitochondrial targeting and intramitochondrial sorting has been demonstrated by gene fusion experiments in which parts of a mitochondrial precursor protein can be attached to a nonmitochondrial "passenger" protein. Generally, three observations have been made: (i) the cleavable amino-terminal prepiece of imported mitochondrial proteins fused to nonmitochondrial proteins [such as mouse dihydrofolate reductase (DHFR) or *Escherichia coli* β -galactosidase] can correctly mediate mitochondrial targeting and frequently intramitochondrial sorting of the passenger protein; (ii) mitochondrial proteins in which the prepiece has been removed cannot be imported into mitochondria; and (iii) distinct regions of the polypeptide chain of proteins which are not proteolytically processed contain the information necessary for targeting and sorting. It has been suggested that some mitochondrial precursor proteins also have carboxy-terminal extensions that are removed during import and maturation, though the significance of these findings is as yet unclear (Okamura *et al.*, 1985; Power *et al.*, 1986; Patterson and Poyton, 1986).

Cvtochrome oxidase IV (COX IV) from yeast, an inner membrane protein, is synthesized as a precursor with a 25 amino acid amino-terminal prepiece (Maarse et al., 1984). When progressively truncated parts of the COX IV presequence were fused to DHFR, the first 12 amino acids, but no less, directed DHFR to the mitochondrial matrix both in vivo and in vitro (Hurt et al., 1984b, 1985a). When the entire 25 amino acid presequence or the first 22 amino acids were fused to DHFR, proteolytic processing by the matrix peptidase also took place, albeit at an alternative site in the latter case. Since the fusions were directed to the matrix instead of the inner membrane, even when the first 53 amino acids of the COX IV precursor were fused to DHFR (Hurt *et al.*, 1984a), the intramitochondrial sorting information must be contained within the mature part of COX IV. Mature COX IV, prepared from either pre-COX IV in vitro or with fusions *in vivo*, was neither imported nor bound to mitochondria (Hurt et al., 1984a). In fact, removal of only the first 7 amino acids of the prepiece prevented COX IV import (Hurt et al., 1985b).

Similarly, the targeting information for yeast pre-ATPase $F_1\beta$, which contains about a 20 amino acid prepiece and is imported to the matrix, exists within the first 27 amino acids of the precursor protein (Douglas *et al.*, 1984; Emr *et al.*, 1986). In fusion studies, as few as 39 amino acids from the amino terminus of pre- $F_1\beta$ (shorter fusions were not examined) could direct invertase to mitochondria *in vivo*, but 169 amino acids were required to direct β -galactosidase (presumably due to a folding artifact). Internal deletion studies of a fusion between pre- $F_1\beta$ amino acids 1–380 and β -galactosidase narrowed down the portion with the targeting information to the first 27 amino acids of the $F_1\beta$. In all cases, however, the importable fusions were misdirected to the inner membrane. Deletion proteins made from authentic $F_1\beta$ in which amino acids were removed between residues 10 and 36 of the pre- $F_1\beta$ were fully import competent, while deletions within the first 10 amino acids abolished import (Vassarotti *et al.*, 1987a).

The amino-terminal prepiece of both rat and human ornithine carbamoyltransferase (OTC), which is 32 amino acids long and directs the protein to the matrix, can also target nonmitochondrial passenger proteins to the matrix *in vitro* (Horwich *et al.*, 1985b; Nguyen *et al.*, 1986). In contrast to the case of COX IV, the targeting information does not appear to reside in the very amino terminus of the prepiece since deletion studies in which either the amino or carboxy terminus of the prepiece were removed produced proteins which were still import competent. Instead, the targeting information appears to reside between amino acids 8 and 22 of the 32 amino acid prepiece, while the flanking regions contribute to import efficiency (Horwich *et al.*, 1986). The shortest targeting sequence identified to date is from the prepiece of 5-aminolevulinate synthase, in which the amino-terminal 9 amino acids fused to β -galactosidase correctly directs the fusion protein to the mitochondrial matrix *in vivo*, though with low efficiency (Keng *et al.*, 1986).

Proteins which do not contain removable prepieces also contain specific targeting information. In yeast ADP/ATP carrier this is contained within the first 115 amino-terminal amino acids but has not been further resolved (Adrian *et al.*, 1986). Since the ADP/ATP carrier is a tripartite protein having three segments (each of approximately 100 amino acids) which have a high degree of homology (Saraste and Walker, 1982), then similar targeting ability might also exist in the other two segments of the protein, [Interestingly, the boying phosphate carrier protein, which has a high degree of structural homology with the ADP/ATP carrier and would presumably follow a similar import pathway, is synthesized as a precursor with a 49 amino acid amino-terminal extension (Runswick et al., 1987)]. In the 70 kDa outer membrane protein from yeast, the targeting and sorting functions are contained in the first 41 amino-terminal amino acids. Deletion and fusion studies have identified two critical regions: amino acids 1 through 21 are required for mitochondrial targeting while the overlapping amino acid sequence 10 through 37 is necessary for sorting via membrane anchoring (Riezman et al., 1983c; Hase et al., 1984, 1986). As for proteins containing removable prepieces, the information exists in the amino-terminal end of the protein. In fact, the amino-terminal 12 amino acids of the 70 kDa protein fused to mature COX IV could target the fusion protein to mitochondria and restore cytochrome oxidase function in COX IV-deficient mutants in vivo (Hurt et al., 1985b).

17. Synthesis and Assembly of Mitochondrial Proteins

That the amino-terminal prepiece carries specific mitochondrial targeting information is confirmed by comparing differences in alcohol dehydrogenase (ADH) isozymes which have different subcellular locations. ADH I and II are located in the cytoplasm while ADH III is a mitochondrial protein. They are 80–90% identical in sequence except for a 27 amino acid prepiece in ADH III. If the presequence of ADH III was removed it could not be imported into mitochondria. If the ADH III prepiece was fused to cytosolic ADH II, then the fusion protein was imported into the mitochondrial matrix. Therefore, ADH II is a cytosolic protein since it lacks an amino-terminal targeting sequence while ADH III is a mitochondrial protein since it contains the targeting sequence (van Loon and Young, 1986).

The mitochondrial targeting function of amino-terminal extensions has also been suggested by studies of other proteins in which isozymes having different subcellular locations are encoded by the same gene. For example, the gene encoding yeast histidyl-tRNA synthase has two in-frame translation starts, both of which are expressed (Natsoulis et al., 1986). Mutations destroying the first start codon resulted in a respiratory deficient (Pet⁻) phenotype without affecting the cytoplasmic isozyme suggesting that the longer mRNA encodes the mitochondrial isozyme while the shorter message encodes the cytoplasmic form. Similarly, the yeast 2isopropylmalate synthase gene contains multiple in-frame transcription start sites (Beltzer et al., 1986) which produce two related proteins of different sizes in cell-free translation mixtures (Hampsey et al., 1983). Only the larger of these two proteins was imported into mitochondria, suggesting that selection of the appropriate transcription and translation start sites controls the subcellular location of the protein and that mitochondrial targeting information is contained in the amino terminus of the larger precursor protein. This is also the case for a 20 kDa protein from Neurospora crassa (M. Tropschug, H. Köhler, R. A. Stuart, and W. Neupert, in preparation). A single gene encodes the mature-size cytosolic form and a larger precursor (24 kDa), which is imported into mitochondria. During import, the amino-terminal extension is removed in two proteolytic steps.

Mitochondrial prepieces appear to be able to direct almost any passenger protein into mitochondria. For example, in addition to fusions with DHFR and β -galactosidase, it has been demonstrated that a mitochondrial presequence (in this case from COX IV) can direct a chloroplastencoded protein (ribulose-1,5-bisphosphate carboxylase, large subunit) into mitochondria (Hurt *et al.*, 1986b) and that ATPase subunit VIII, normally a mitochondrial gene product, can also be imported back into mitochondria when fused to a mitochondrial-targeting sequence (Gearing and Nagley, 1986). In the latter case, the 66 amino acid prepiece of ATPase subunit IX could mediate import of ATPase VIII, while the shorter 40 amino acid COX VI leader could not. It is clear then that targeting information itself resides in the amino-terminal extension of most precursor proteins. The efficiency of import with a given prepiece, however, is significantly affected by the passenger protein (van Steeg *et al.*, 1986).

B. Properties of Prepiece Sequences

The prepiece sequences for a number of imported mitochondrial proteins have now been determined (Table I). They vary in length between 20 and 80 amino acids. Although the prepieces do not share extensive sequence homology (except perhaps between equivalent proteins in different organisms), they do have several similar characteristics including the following: (i) a high content of positively charged basic amino acids (particularly arginine) which are distributed somewhat randomly throughout the prepiece; (ii) an absence or near absence of negatively charged acidic amino acid residues: (iii) a high content of hydroxylated amino acids (particularly serine); and (iv) a propensity to form amphiphilic α -helical structures. Only a few exceptions exist, the most striking of which is the amino-terminal sequence of the 17 kDa subunit IV of yeast bc_1 complex which contains an extremely high content of acidic amino acids (van Loon et al., 1984); however, import of this protein into mitochondria has not been examined. Another deviation from these general properties occurs in human OTC, which, unlike its counterpart in rat, contains no hydroxylated amino acids. The placement of positively charged amino acids is well conserved between human and rat OTC but the hydroxylated amino acids in rat OTC have been replaced in human OTC by asparagine (instead of threonine) and phenylalanine (instead of serine).

How these amino-terminal prepieces direct proteins to mitochondria and how they facilitate transport across membranes is not entirely clear. One possibility is that they are recognized by specific receptors on the mitochondrial surface. Another is that, because of their amphiphilic helical nature, they can penetrate lipid bilayers. Finally, because they are positively charged, they may be electrophoretically drawn toward the mitochondrial matrix by the potential across the inner membrane (inside negative). It is possible that all of these events are involved. For example, a membrane potential is necessary for the import of all proteins which must be directed to the inner membrane or matrix. Similarly, if positively charged amino acids in the prepiece are replaced by uncharged amino acids, then import is abolished (Horwich *et al.*, 1985a). Specific amino acids, and not just net positive charge, also appear to be important. In human OTC, arginine 23 of the 32 amino acid prepiece is critical for both import and proteolytic processing; however, when it is replaced by an amino acid supporting α -helical structure, the import function is conserved (Horwich *et al.*, 1986).

The ability to form amphiphilic helical structures may be a critical feature of presequences. In a theoretical analysis of many mitochondrial presequences, von Heijne identified regions which can be folded into helices with high hydrophobic moment (von Heijne, 1986a). The segments of highest hydrophobic moment correlated very well with the critical regions identified by fusion studies for yeast COX IV and 70 kDa protein, and human OTC (see Table I). In another study, removal of the basic amphipathic α -helix of the ATPase F₁ β prepiece prevented import into mitochondria (Vassarotti *et al.*, 1987b). When mutations were selected that restored the correct *in vivo* localization of ATPase F₁ β , it was found that these modifications specifically replaced acidic amino acids at the amino-terminus with basic or neutral amino acids that support amphipathic helix formation.

Some of the physical properties of prepieces have been examined with synthetic prepiece peptides. Synthetic peptides of the COX IV prepiece are soluble in aqueous solutions but were able to penetrate phospholipid monolayers or disrupt liposomes having a diffusion potential negative inside but not of the opposite polarity (Roise et al., 1986). A synthetic peptide equivalent to the first 27 amino acids of pre-OTC assumed an amphiphilic helical conformation that was induced by the presence of anionic phospholipids and could perturb the bilayer of synthetic liposomes (Epand et al., 1986). Synthetic prepiece peptides dissipated the membrane potential in isolated mitochondria (Ito et al., 1985; Gillespie et al., 1985; Roise et al., 1986); however, in the presence of reticulocyte this did not appear to occur (Gillespie et al., 1985). In this case, a synthetic peptide of amino acids 1-27 of the rat OTC prepiece completely blocked the import of pre-OTC, while amino acids 16-27 did not. The peptide (1-27) also blocked the import of pre-malate dehydrogenase (a matrix protein) and pre-thermogenin (uncoupling protein of the inner membrane), suggesting common components are shared in the import pathway of these proteins.

Artificial presequences, encoded by synthetic oligonucleotides, that were fused to the mature part of COX IV were able to mediate import into mitochondria both *in vitro* and *in vivo* if the balance of basic, hydrophobic and hydroxylated amino acids was similar to that of authentic presequences (Allison and Schatz, 1986). In all cases, the import-competent extensions were surface active, indicating that targeting may not depend

TABLE I

Comparison of Amino-Terminal Prepieces of Imported Mitochondrial Proteins

Sequence*	Notes
DUTER MEMBRANE	
1 MKSFITRNKTATLATVAATGTAIGAYYYYNOLOOQUORGKKNTINKDEKK	(a)
INTERMEMBRANE SPACE	(b)
2 MITTAVRLLPSLGRTAHKBSLYLFSAAAAAAAAAAAATFAYSQSHKRSSSSPGGGSNHGWNNWGKAAALASTTPLVHVASV. 3 MLK <u>WKPLLKISKNCEAATTERA</u> SKTRLNTIRAYGSTVPKSKSFEQDSRKRTQSWTALRVGAILAATSSVAYLNWHNGQID	¥- + - +
NNER MEMBRANE - C SIDE	
4 MAPVSIVS	(b)
5 MFSNLSKRWAORTLSKSFYSTATGAASKSGKLTOKLVTAGVAAAGITASTLLYADSLTAEAMTAAEHGLHA	(b)
- INTRINSIC OR UNKNOWN	
6 MLRNTFTRAGGLSRITSVRFAQTHALSNAA	
7 MLRTPTVSALVRNVAVRAAKPTMAVRAASTMPISNPT	
8 MLATRVFSLIGRAISTSVCVRAHGSVVKSED	(c)
9 MLARGLPLRSALVKACPPILSTVGEGWGHHRVGTGEGAGISTKTPRPYS	
0 MLSRAIFRNPVINRTLLRARPGAYHATRI	
1 MASTRVLASRLASQMAASAKVARPAVRVAQVSKRTIO	(b)
2 MOTTGALLISPALIRSCTRGLIRPVSASFLSRPEIOSVOPSYSSGPLOVARREFOTSVVSRDIDTAAKFIG	(b)
3 MYTCAKFVSTPSLIRRTSTVLSRSLSAVVVRRPETLTDESHSSLAVVPRPLTTSLTPSRSFQTSAISRDIDTAAKFIG.	(b)
- M SIDE	
4 ML <mark>ELROSIRFFKPATRTLCS</mark> SRYLLOOKPVVKTAQ	
NATRIX	
5 MSAILSTTSK <mark>SFLSRGSTROCONMOKAL</mark> FA	
6 MLSKLASLQTVAALRRGLRTSVASATSVATKKTEQ	
7 MALLOSRLLLSAPRRAAATARASSWWSHVEMG	
8 MALLHSGRVLSGVASAFHPGLAANASARASWWAHVEMGP	
9 MFAKTAA <u>ANLTKKGGLSLLSTTARR</u> TKVTLPDLKWD	
0 MNSLRIARAALRVRPTAVRAPLORRGYAEAVADKIK	(d)
MORSIFARFGNSSAAVSTLNRLSTTARPHAKNGYATA	
2 MLRTSSLFTRRVQPSLFSRNILRLQSTAAIPKTQKGV	(e)
3 MLFNLRILLNNAA <u>FRNGHNFMVRNFRCGOPI</u> ONKVOLKGRDL	
MLSNLRILLNKAA <u>LRKAHTSMVRNFRYGKPY</u> OSOVOLKGRDL MSALL <mark>PRLLTRTAFKASGKLLRL</mark> SSVISRTFSOTTTSYAAAFDRSKP	
. . * <u>******</u> * * * . * .	(f)
* * *	(q)
7 MVLPRLYTATSRAFKAAQSAPLUSTSWKRCMASA	(h)
18 MASRRL <mark>LASILROSAORGGGLISR</mark> SLGNSIPKSASRASSRASPKGFLLNRAVQYATSAAAPASOP 19 mtslworgtgcklfffrvaaapasgalärltpsaslppaolllravkrrshpvrdyaatspspkagaa	(1) (b.i)
29 MTSLWGKGTGCKLFKFRVAAAPASGALRRLTPSASLPPAQLLLRAVRRRSHPVRDYAAQTSPSPKAGAA MAARLLRVASAALGDTAGRYRLLVKPRAGAGGLRGSRGPGLGGGAVATRTLSVSGRAQSSSEDKITVH	(h,j)

TABLE I (continued)

	Sequence*	Notest
отн	ER SEQUENCES OF INTEREST	(k)
3,	MAAVIAKSSVSAAVARPARSSVRPMAALKPAVKAAPVAAPAQANOMMVWTPVNNK	
32	MDMLELVGEYWEQLKITVVVAAAEDDDNEQHEEKAAEGEEKEEENGDE	
33	MPOSFTSIARIGDYILKSPVLSKLCVPVANOFINLAGYKKLGLKFDDLIA	
34	MKIQLVRWHCSRNALWNRAFYSTRKATKNASSATPATMTSMVSQRQDLFM	
35	MSNKQAVLKLISKRWISTVORADFKLNSEALHSNATVFSMIQPTGCFHLG	
36	MLSRSLNKVVTSIKSSSIIRMSSATAAATSAPTANAANALKASKAPKKGK	
3-	* * * . * * * * * * *. * MVKESIIALAEHAASRASRVIPPVKLAYKNMLKDPSSKYKPFNAPKLSNR	(1)
38	MT <u>VLYAPSGATQLYFHLLRK</u> SPHNRLV <u>VSHQTRRHLMGFVRNALG</u> LDPPP	
39	MVNWOTLFMVSLRROGSSSRYRYKFNMENITHOVFPRCKQAFKKTNLSYE	
40	MSSSQVVRDSAKKLVNLLEKYPKDRIHHLVSFRDVQIARFRRVAGLPNVD	

* The amino-terminal prepiece sequences of imported mitochondrial precursor proteins are listed (by the single letter amino acid code) in groups according to the intramitochondrial location of the mature protein. Above the primary sequence, basic (lysine and arginine), acidic (aspartate and glutamate), and hydroxylated amino acids (serine and threonine) are identified $(+, -, and \cdot, respectively)$. Proteolytic cleavage sites which yield intermediate or mature proteins are indicated by an arrow or by a bracket above the sequence where only the general region of proteolytic processing is known (i.e., based on apparent molecular weight differences between precursor and intermediate or mature proteins). The segment of the prepiece identified by von Heijne (1986a) as having the highest hydrophobic moment (18 residue window, Eisenberg et al., 1984) when plotted in a helical wheel projection (Schiffer and Edmundson, 1967) is indicated by a box. Proteins: (1) 70 kDa protein (yeast), Hase et al. (1983); (2) cytochrome c peroxidase (yeast), Kaput et al. (1982), Reid et al. (1982); (3) cytochrome b_2 (yeast), Guiard (1985), Gasser et al. (1982b); (4) Rieske Fe/S of bc1 complex (N. crassa), Harnisch et al. (1985), Hartl et al. (1986); (5) cytochrome c_1 (yeast), Sadler et al. (1984), Gasser et al. (1982b); (6) cytochrome oxidase V (yeast), Koerner et al. (1985); (7) cytochrome oxidase V (N. crassa), Sachs et al. (1986); (8) cytochrome oxidase IV (bovine), Lomax et al. (1984); (9) cytochrome P-450 (SCC) (bovine), Morohashi et al. (1984); (10) cytochrome oxidase VI (yeast), Wright et al. (1984); (11) ATPase IX (N. crassa), Viebrock et al. (1982), Schmidt et al. (1984); (12) ATPase IX-P1 (bovine), Gay and Walker (1985); (13) ATPase IX-P2 (bovine), Gay and Walker (1985); (14) cytochrome oxidase IV (yeast), Maarse et al. (1984); (15) citrate synthase (yeast), Suissa et al. (1984); (16) ornithine aminotransferase (rat), Mueckler and Pitot (1985), Simmaco et al. (1986); (17) aspartate aminotransferase (chicken), Jaussi et al. (1985); (18) aspartate aminotransferase (porcine), Joh et al. (1985); (19) Mn-superoxide dismutase (yeast), Marres et al. (1985); (20) ATPase $F_1 \delta$ subunit (N. crassa), Kruse and Sebald (1984); (21) 5-aminolevulinate synthase (yeast), Keng et al. (1986), Urban-Grimal et al. (1986); (22) alcohol dehydrogenase iso-III (yeast), Young and Pilgrim (1985); (23) ornithine carbamoyltransferase (human), Horwich et al. (1984); (24) ornithine carbamoyltransferase (rat), McIntyre et al. (1984), Takiguchi et al. (1984), Kraus et al. (1985); (25) mEF-Tu (yeast), Nagata et al. (1983); (26) carbamoyl-phosphate synthase I (rat), Nyunoya et al. (1985); (27) ATPase $F_1\beta$ subunit (yeast), Takeda et al. (1985); (28) ATPase $F_1\beta$ (Nicotiana plumbaginifolia), Boutry and Chua (1985), Kobayashi et al. (1986); (29) on specific amino acid sequences but rather on the overall composition of the prepiece and its amphipathic nature. Sequences with these characteristics may reside at the amino-terminus of mitochondrial precursor proteins, where they are exposed and can be active, but they also appear to exist within nonmitochondrial proteins, although they are apparently masked such that they do not normally direct these proteins to mitochondria (Hurt and Schatz, 1987).

C. The Stop Transport Model

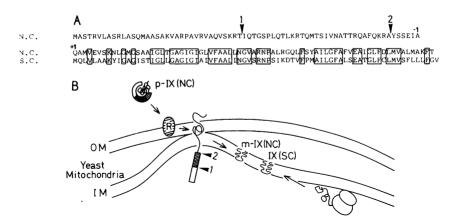
Based on the sequence characteristics of mitochondrial precursor proteins, Hurt and van Loon (1986) proposed a model for intracellular target-

+ Notes: (a) Not an actual prepiece (i.e., not proteolytically removed) but amino terminus is able to specifically target β -galactosidae to mitochondria (Hase et al., 1984, 1986). (b) Precursors are processed in two proteolytic steps. This has not yet been demonstrated for bovine ATPase IX (P1 or P2) but it may occur in two steps like N. crassa ATPase IX. (c) Bovine COX IV is equivalent to COX V in yeast or N. crassa (Gregor and Tsugita, 1982). (d) Possible cleavage site based on homology with N. crassa ATPase IX processing sites. Grouped with matrix proteins since it is probably imported as a matrix protein and then assembled into ATPase. (e) Possible cleavage site based on alignment with cytosolic ADH II. (f) Possible cleavage site based on alignment with bacterial mature sequence. (g) An alternate region with similar hydrophobic moment exists between residues 22 and 39. (h) ATPase $F_{1\beta}$ (a subunit of ATPase at the inner face of the inner membrane) is grouped with matrix proteins since it is probably imported as a matrix protein and then assembled into ATPase. (i) Possible cleavage site based on homology with amino terminus of mature $F_{,\beta}$ from Ipomoeg batatas (Kobayashi et al., 1986). (i) Possible cleavage site based on homology with bovine mature sequence. (k) The presequence of chloroplast RuBPCase (31) is presented since the first 35 amino-terminal amino acids can direct DHFR or mature COX IV to mitochondria (Hurt et al., 1986). The first 50 amino acids of the 17K subunit VI of the bc_1 complex (32; determined from the nuclear gene sequence)—which contains an unusually high content of acidic amino acids—are presented, though import has not been examined. Sequences 33-40 are amino-terminal sequences (determined from the nuclear gene sequence) for putative mitochondrial proteins or proteins for which import into mitochondria has not been characterized. The first 50 amino acids from the presumed start site are presented. (1) Apparently imported into mitochondrial matrix without proteolytic processing (Gasser et al., 1982a; Hampsey et al., 1983).

ATPase $F_1\beta$ (human), Ohta and Kagawa (1986); (30) adrenodoxin (bovine), Okamura et al. (1985); (31) ribulose-1,5-bisphosphate carboxylase small subunit (*Chlamydomonas reinhardtii*), Schmidt et al. (1979), Hurt et al. (1986a); (32) subunit VI of bc₁ complex (yeast), van Loon et al. (1984); (33) 14 kDa subunit of bc₁ complex (yeast), De Haan et al. (1984); (34) threonyl-tRNA synthase (yeast), Pape et al. (1985); (35) tryptophanyl-tRNA synthase (yeast), Myers and Tzagoloff (1985); (36) histidyl-tRNA synthase (yeast), Natsoulis et al. (1986); (37) 2-isopropylmalate synthase (yeast), Beltzer et al. (1986); (38) MSS51 (COX I pre-mRNA maturase, yeast), Faye and Simon (1983); (30) CBP2 (cytochrome b pre-mRNA maturase, yeast), McGraw and Tzagoloff (1983); (40) CBP6 (yeast), Dieckmann and Tzagoloff (1985).

ing and intramitochondrial sorting of imported mitochondrial proteins. In this model, mitochondrial presequences (or amino-terminal sequences in noncleavable proteins) can be divided into distinct domains: (1) matrix targeting domains; (2) stop transport domains; and (3) proteolytic cleavage sites. The presence or absence and arrangement of these domains determines the targeting and sorting of the accompanying mature piece of the protein. The matrix targeting domain (the amino-terminal positively charged region of the prepiece) directs the attached protein to mitochondria and mediates its transfer across both mitochondrial membranes to the matrix. If this domain is followed by a stop transport domain (a long uninterrupted sequence of uncharged amino acids capable of forming a transmembrane anchor), then the transfer of the protein is halted at either the outer or inner membrane, depending on subtle differences in the size and strength of the stop transport region. Further sorting or simply removal of the prepiece can then occur by proteolytic processing.

For example, in this model ADH III is a matrix protein because it contains the amino-terminal matrix targeting domain but no subsequent stop transport sequence. Inner membrane proteins also contain the matrix targeting domain but are halted at the inner membrane because of stop transfer domains within the mature part of the sequence. The matrix targeting sequence is then removed by proteolytic processing to prevent further import. For intermembrane space proteins, such as cytochrome b_2 , the stop transport domain is in the prepiece so that when transport is halted at the inner membrane and proteolytic cleavage occurs at the outer face of the inner membrane the mature part of the protein is released into the intermembrane space. Cytochrome c_1 is proposed to follow a similar mechanism but remains associated with the inner membrane because of a carboxy-terminal anchor. Indeed, when the first 64 amino acids of cytochrome c_1 (containing the entire 61 amino acid presequence) was fused to DHFR, the fusion protein was directed to the inner membrane and DHFR was released into the intermembrane space following processing (van Loon et al., 1986). Identical results were observed when the cytochrome c_1 prepiece was fused to the mature part of COX IV (van Loon *et al.*, 1987). Outer membrane proteins are simply halted at the outer membrane by a stop transport domain with presumably different characteristics from the inner membrane stop transport region.


The stop transport model accounts for the intramitochondrial sorting of many imported proteins. For the most part, it assumes a relatively simple linear arrangement of targeting and sorting domains, which may not be the case for all proteins. It does not, however, account for the import mechanism of intermembrane space proteins which do not contain presequences, such as cytochrome c or adenylate kinase. Other movements

may also be possible which the data supporting the stop-transport model cannot yet exclude. For example, the Fe/S protein of the bc_1 complex, which like cytochrome c_1 is also synthesized with a long prepiece (that is processed in two steps), is fully transported into the matrix, where it is processed by the matrix peptidase, and is then redirected back to the intermembrane space (Hartl *et al.*, 1986; see Section XIB). In *Neurospora crassa*, cytochrome c_1 follows a similar transport pathway through the matrix (F.-U. Hartl, J. Ostermann, and W. Neupert, in preparation). In yeast, however, the imported cytochrome c_1 was never found on the matrix side of the inner membrane (van Loon and Schatz, 1987).

D. Heterologous Import

The precursor proteins and import machinery of mitochondria from different organisms share many common features. This can be demonstrated in heterologous import experiments in which the mitochondrial precursor protein from one organism can be imported into the mitochondria of another. For example, the Fe/S protein from Neurospora crassa bc_1 complex could be imported into veast mitochondria (Teintze *et al.*.. 1982), and, similarly, either ADP/ATP carrier or ATPase subunit IX could be imported into rat liver mitochondria (Schlever et al., 1982). This is not at all surprising since conservation of complicated import machinery is likely to be high during evolution. What is interesting, however, is that the precursor to N. crassa ATPase subunit IX could be imported into yeast mitochondria and be correctly processed (Schmidt et al., 1983a; Fig. 1). In Neurospora, ATPase IX is a nuclear gene product which is synthesized on cytoplasmic polysomes (Jackl and Sebald, 1975; van den Boogaart et al., 1982b) while in yeast it is coded for by mitochondrial DNA and synthesized inside the mitochondrion (Tzagoloff and Meagher, 1972; Macino and Tzagoloff, 1979; Hensgens et al., 1979). The mature proteins are similar, and their sequences are 53% homologous in overlapping regions; however, the Neurospora pre-ATPase IX, which must be imported from the cytosol, contains a long 66 amino acid amino-terminal prepiece which presumably directs it to the mitochondrial inner membrane. A similar prepiece is absent in the yeast mitochondrial gene product.

Heterologous import has also been demonstrated between different subcellular organelles. When the prepiece (transit peptide) of chloroplast ribulose-1,5-bisphosphate carboxylase (small subunit) was fused to either DHFR or the mature part of cytochrome oxidase IV, the resulting fusion proteins were imported into mitochondria *in vivo*, albeit with lower efficiency than with authentic mitochondrial prepieces. In the latter case, the fusion protein could restore cytochrome oxidase activity *in vivo* when

Fig. 1. Neurospora crassa pre-ATPase subunit IX is imported into yeast mitochondria. (A) Comparison of amino acid sequences of ATPase IX from *N. crassa* (N.C.) and Saccharomyces cerevisiae (S.C.) beginning with the amino terminus. The two sites of proteolytic processing of the *N. crassa* ATPase IX prepiece are indicated by arrows. Identical amino acid residues are indicated by boxes. (See text for references.) (B) Neurospora crassa ATPase IX is a nuclear gene product synthesized in the cytosol with a long prepiece. It can be imported into and processed by yeast mitochondria (*in vitro*) where ATPase IX is a mitochondrial gene product. Left: Sequence of events in the heterologous import of *N. crassa* ATPase IX. Right: Synthesis of yeast ATPase IX on membrane-bound mitochondrial ribosomes and insertion into the inner membrane. OM, Outer membrane; IM, inner membrane; R, receptor; p, precursor; m, mature.

used to transform a COX IV-deficient mutant of yeast (Hurt *et al.*, 1986a,b). When compared to mitochondrial prepiece sequences, the chloroplast transit peptide shares many common features (e.g., high content of basic and hydroxylated amino acids with no acidic amino acids; Table I). What subtle differences exist in the targeting prepieces that correctly direct proteins to either chloroplasts or mitochondria in photosynthetic cells are unknown.

IV. RECEPTORS

While much information is obviously contained within specific regions of mitochondrial precursor proteins, there must exist complementary structures within mitochondria themselves to decode and process it. One obvious possibility is that receptors are involved in the initial recognition of proteins imported from the cytosol.

Proteinaceous components on the outer surface of mitochondrial membranes were first demonstrated by shaving isolated mitochondria with low concentrations of protease which did not penetrate or destroy the outer membrane (Gasser *et al.*, 1982a; Zwizinski *et al.*, 1984; Pfaller and Neupert, 1987). Following this treatment, the specific binding of precursor proteins to the outer membrane was blocked and import was abolished.

The binding of precursor proteins to mitochondria is independent of import and precedes all other events in the import pathway. For example, mature outer membrane porin is in a location which is protected from externally added proteases. If the insertion of precursor porin into the lipid bilayer of the outer membrane was inhibited by importing at 0°C, the binding of the protein to mitochondria was unaffected and it remained in a protease-susceptible location at the outer face of the outer membrane. When mitochondria containing the bound porin were reisolated and warmed to 25°C, the protein was subsequently imported from its receptor sites to the protease-protected location (Freitag et al., 1982). Similarly, the import of cytochrome c could be blocked with the heme analog deuterohemin which prevents covalent attachment of heme to the precursor apocytochrome c and subsequent translocation across the outer membrane. Under these conditions, apocytochrome c could still bind to mitochondria independently of import. When the inhibition by deuterohemin was reversed by adding excess amounts of hemin, cytochrome c was subsequently imported from its receptor sites into the intermembrane space (Hennig and Neupert, 1981).

Proteins such as the ADP/ATP carrier, which require a membrane potential for import, could be stalled at their receptor sites by disrupting the potential with CCCP. On reestablishing the membrane potential, the bound precursor could be imported (Zwizinski *et al.*, 1983; Pfanner and Neupert, 1985). In these cases, however, the binding to deenergized mitochondria was slow, though clearly independent of a membrane potential. Binding of pre-ATPase $F_1\beta$ to deenergized mitochondria did not occur at all (Zwizinski *et al.*, 1984), though for unknown reasons. The binding of membrane potential-dependent proteins to deenergized mitochondria may be poor because of the low capacity of specific sites which may be occupied by precursors with higher affinity.

Receptors for imported mitochondrial proteins are specific in many regards as was demonstrated by the receptors for precursors to cytochrome b_2 and citrate synthase in yeast (Riezman *et al.*, 1983b). First, binding was specific to the outer mitochondrial membrane. These precursor proteins were able to bind to whole mitochondria or to isolated outer membrane vesicles (Riezman *et al.*, 1983a) but not to inner membrane preparations. Binding was also specific for precursor proteins. When the partially processed intermediate form of the cytochrome b_2 precursor was generated by treatment with an extract of the mitochondrial matrix (containing the processing peptidase), the intermediate size cytochrome b_2 did not bind to mitochondria. Similarly, binding of the mature form did not occur either. The same observation has been made with cytochrome cwhere mature holocytochrome c did not recognize the binding sites in *Neurospora* mitochondria (Hennig *et al.*, 1983) and even large excesses could not displace prebound apocytochrome c (H. Köhler and W. Neupert, unpublished). Last, binding was specific for mitochondrial proteins. For example, the binding of cytosolic hexokinase and glyceraldehyde-3-phosphate dehydrogenase to whole yeast mitochondria or isolated outer membrane vesicles was negligible (Riezman *et al.*, 1983b).

How many different receptors exist to mediate the recognition and binding of imported mitochondrial proteins? It is clear from the large number of mitochondrial proteins and the limited number associated with the outer membrane that it would be impossible, if not just simply impractical, for a different receptor to exist for each protein. Nevertheless, experiments have shown that many mitochondrial proteins do not share common binding sites so that a single receptor for all imported proteins is not the case either. For example, the binding of porin to yeast mitochondria was not affected when the mitochondria were pretreated with low concentrations of trypsin that were sufficient to abolish the binding of F₁ ATPase β subunit and cytochrome b_2 (Gasser and Schatz, 1983). This suggests that they are bound by different receptors having different trypsin sensitivities. Similarly, shaving *Neurospora* mitochondria with elastase inhibited the binding and import of ADP/ATP carrier and porin but had no effect on ATPase F₁ β (Zwizinski *et al.*, 1984).

By this criterion it is difficult to assign possible common binding sites for the few mitochondrial proteins that have been studied to date. In addition, proper competition studies are limited by the difficulties of preparing sufficient amounts of mitochondrial precursor proteins. In three cases this has been overcome: (1) apocytochrome c, the precursor to holocytochrome c, can be prepared by chemical cleavage of the heme group and renaturation of the protein by dialysis from urea (Ambler and Wynn, 1973); (2) a water-soluble form of porin can be made by subjecting isolated porin to acid precipitation and then resolubilizing the protein at alkaline pH in the absence of detergent (Pfaller et al., 1985); and (3) the precursor to F_1 ATPase β subunit can be accumulated then purified from veast rho⁻ mutants grown in the presence of CCCP (Ohta and Schatz, 1984). In all three cases, the resulting precursor proteins were import competent and retained characteristics of their precursors synthesized in cell-free systems. Apocytochrome c does not compete for the binding of any mitochondrial proteins tested so far, including cytochrome c_1 , the Fe/ S protein of bc_1 complex, ATPase F₁ β , ATPase IX, or ADP/ATP carrier

(Zimmermann *et al.*, 1981; Teintze *et al.*, 1982). It appears to have a unique receptor. Porin, however, is able to compete for the binding and import of the ADP/ATP carrier, suggesting a common receptor (Pfaller and Neupert, 1987). Binding competition has not yet been examined using the ATPase $F_1\beta$ precursor purified from yeast.

The binding of cytochrome c to Neurospora mitochondria is the best characterized of imported mitochondrial proteins so far. When radiolabeled apocytochrome c was bound to mitochondria in the presence of deuterohemin (to prevent subsequent import), it could be completely displaced by adding unlabeled apocytochrome c but not holocytochrome c (Hennig *et al.*, 1983). Apocytochrome c from different species could also displace the precursor protein to varying degrees. Titration of the binding sites on mitochondria by Scatchard analysis indicated that there were 90 pmol of high affinity binding sites for apocytochrome c per milligram of mitochondrial protein. These sites had an association constant (K_a) of 2.2 $\times 10^7 M^{-1}$ (Table II).

When mitochondria were solubilized with octyl glucoside and the resulting extract was reconstituted into liposomes, the high affinity binding sites were also reconstituted (Köhler *et al.*, 1987). Using this procedure to identify high affinity binding for apocytochrome c, a putative receptor protein was identified and purified to homogeneity. The protein, when reconstituted into liposomes, bound apocytochrome c with similar affinity compared to whole mitochondria. In addition, the purified protein could compete with mitochondria for the binding of apocytochrome c. The unusual feature of the apocytochrome c binding protein, however, is that it is a soluble protein of the intermembrane space. This explains why more than a 10-fold higher concentration of proteases are required to abolish apocytochrome c binding of apocytochrome c to the protein meets all criteria for specific interaction of a protein with a receptor—namely, (i)

Precursor protein	Number of binding sites (pmol/mg mitochondrial protein)	Association constant (K _a)	Reference
Apocytochrome c	90		Hennig et al. (1983)
Porin	5-10		Pfaller et al. (1985, 1987)
ADP/ATP carrier	1.7		Schmidt et al. (1985)

TABLE II

Mitochondrial Recepto	rs for	Imported	Precursor	Proteins
-----------------------	--------	----------	-----------	----------

rapid and reversible binding, (ii) saturable and limited in number, and (iii) specificity—the location in the intermembrane space is unexpected. Cytochrome c appears to have an unusual import pathway which is not representative of the mechanism for other imported proteins. Apocytochrome c is able to spontaneously insert into lipid bilayers in a nonspecific manner with low affinity (Rietveld *et al.*, 1983, 1985, 1986a,b; Rietveld and Kruijff, 1984; Dumont and Richards, 1984). A possible explanation of the binding protein's location is that it recognizes the partially inserted apocytochrome c and then binds it from the inner face of the outer membrane, perhaps to mediate exposure of the cysteine sulfhydryl groups to the heme attaching enzyme. The apocytochrome c binding protein and the heme attaching enzyme are distinct proteins (Nicholson *et al.*, 1987).

The high affinity binding of porin to mitochondria was sensitive to treatment of whole mitochondria with very low concentrations of trypsin, indicating that the receptor is exposed to the outer surface of the outer membrane (Pfaller and Neupert, 1987). As for cytochrome c, the high affinity binding sites for porin could be solubilized with detergent and reconstituted into liposomes. Using this approach, it should be possible to purify the porin receptor.

The identification of putative receptor proteins mediating import into mitochondria has also been successful using other methods. For example, antibodies raised against the total outer mitochondrial membrane of yeast blocked the import of the preCOX IV-DHFR fusion protein (Ohba and Schatz, 1987a). Antibodies raised against a 45 kDa outer membrane protein also blocked import while sera against other outer membrane proteins did not. The Fab fragments of the anti-45 kDa antibodies alone also blocked import. In another study, a 30 kDa protein from the outer membrane of rat mitochondria was specifically cross-linked to the synthetic prepiece (amino acids 1–27) of pre-OTC (Gillespie, 1987). Mild pretreatment of mitochondria with trypsin reduced both cross-linking of the prepiece peptide to the 30 kDa protein and the import of pre-OTC into mitochondria.

V. ENERGY REQUIREMENTS

Precursor proteins bind to mitochondria independently of other events in the import pathway; however, subsequent translocation into the mitochondrion is dependent on energy in most cases. Generally, energy is required for (i) all proteins having an amino-terminal extension, (ii) all proteins which are inserted into or translocated across the inner membrane, and (iii) only for import to the first processing stage for those proteins which are proteolytically processed in two steps. Where import requires energy, it is needed in the form of an energized inner membrane, specifically, the membrane potential component $(\Delta \psi)$ of the total protonmotive force (Δp) .

The primary energy source required for import was first thought to be ATP (Nelson and Schatz, 1979). It was later shown, however, that an energized inner membrane was the necessary energy form. Even a low potential of 20–40 mV, about one-tenth the normal value of 230 mV (Mitchell and Moyle, 1969), can drive the import of mitochondrial proteins (Pfanner and Neupert, 1985).

The requirement for an electrochemical potential and not ATP as the immediate energy source was clearly demonstrated in vitro in a series of experiments by Schlever et al., (1982) in which high intramitochondrial ATP plus a dissipated membrane potential versus low ATP plus a normal membrane potential were compared in *Neurospora crassa* mitochondria. In the first case (high ATP/no membrane potential), the membrane potential was dissipated by the protonophore CCCP, and intramitochondrial ATP was elevated via the ADP/ATP carrier by adding ATP externally. Oligomycin was added to inhibit the F_0F_1 ATPase and prevent the hydrolsis of ATP which would generate a small potential. Under these conditions, high internal concentrations of ATP in the absence of an energized inner membrane could not drive import. In the opposite case (low ATP/normal membrane potential), intramitochondrial ATP was depleted by preincubating mitochondria in the presence of oligomycin (to inhibit the membrane potential-driven synthesis of ATP) and carboxyatractyloside (to block the ADP/ATP carrier and prevent the translocation of external ATP into mitochondria). Under these circumstances, the electrochemical potential in the absence of ATP was sufficient to power import. In yeast mitochondria, import was blocked when the membrane potential was dissipated with CCCP but not when ATP synthesis was inhibited by oligomycin (Gasser et al., 1982a). Furthermore, ATP-supported import in cvanide-inhibited mitochondria was blocked by either carboxyatractyloside (so ATP could not enter the matrix) or oligomycin (which would prevent ATP hydrolysis), demonstrating that ATP-stimulated import was a consequence of the small electrochemical gradient generated by the hydrolysis of ATP by the F_0F_1 ATPase.

The electrochemical potential (or total protonmotive force) Δp is the sum of the membrane potential ($\Delta \psi$) from the separation of charged species across the inner membrane and the force exerted by the pH gradient (ΔpH) ($\Delta p = \Delta \psi - Z \Delta pH$). It is the membrane potential component of the total protonmotive force which is responsible for powering import. This was first suggested by experiments where the ionophore nigericin, which

exchanges K^+ for H^+ in a stoichiometric way across the inner membrane. did not affect the import of ADP/ATP carrier or ATPase IX into Neurospora mitochondria (Schlever et al., 1982). Since nigericin leads to the breakdown of the proton gradient without affecting the membrane potential, it is the latter which drives import of precursor proteins. This was substantiated in experiments where the physiological membrane potential was inhibited by antimycin A/oligomycin and then a valinomycin-induced potassium diffusion potential could drive the import of the ADP/ATP carrier into *Neurospora* mitochondria (Pfanner and Neupert, 1985). This import was not abolished by protonophores like CCCP which dissipate the proton gradient and, in the absence of a K^+ diffusion potential, would normally dissipate the accompanying membrane potential. Furthermore, the establishment of a ΔpH did not power import. The importance of the membrane potential component of the total protonmotive force is not surprising since ΔpH makes only a relatively small contribution to Δp under physiological conditions.

The energy necessary for import is not needed for proteolytic processing itself. For example, proteins that are transported to the inner membrane or matrix, but which are not proteolytically processed, require an energized inner membrane. This has been demonstrated for the ADP/ATP carrier (Schleyer et al., 1982; Pfanner and Neupert, 1985) and for the matrix-localized 2-isopropylmalate synthase (Hampsey et al., 1983). In addition, the purified matrix processing peptidase does not require any form of energy to process protein outside of whole mitochondria (G. Hawlitschek and W. Neupert, unpublished). Instead, energy is reauired for interaction with the mitochondrial inner membrane. Evidence for this is 3-fold. First, all precursor proteins which must be translocated into or across the inner membrane require a membrane potential for import. This is also true for intermembrane space proteins which require proteolytic processing (e.g., cytochrome b_2 , cytochrome c_1 , and cytochrome c peroxidase). In these cases, the precursor protein must at least partially penetrate the inner membrane to reach the matrix peptidase for the first processing event (Daum et al., 1982b; Gasser et al., 1982b; Reid et al., 1982; Teintze et al., 1982). Second, proteins that are imported into the intermembrane space but do not come in contact with the inner membrane, such as cytochrome c (Zimmermann et al., 1981), and those imported into the outer membrane, such as porin (Freitag et al., 1982; Mihara et al., 1982a) and the major outer membrane polypeptides (Gasser and Schatz, 1983), do not require an energized inner membrane for import. Finally, when import of cytochrome c_1 and F_1 ATPase β subunit was performed at 7°C, an intermediate could be trapped in which the aminoterminal prepiece could be processed by the matrix peptidase, but the major portion of the precursor was still outside the mitochondrion and could be digested by externally added proteases (Schleyer and Neupert, 1985). Import to this stage was dependent on energy; however, subsequent translocation of the proteins completely into mitochondria was independent of a membrane potential when chased at 25°C. Therefore, only import of the amino terminus through the inner membrane required a membrane potential while transport of the rest of the protein did not.

Proteolytic processing, however, is not obligatory for import past the energy-dependent step. Precursors to F_1 ATPase β and IX subunits could be partially imported into mitochondria without processing in the presence of *o*-phenanthroline, which blocks the matrix processing peptidase. The precursors could then be chased to the mature size by adding Mn²⁺ in a step that did not require a membrane potential (Zwizinski and Neupert, 1983). The energy-dependent step precedes and is independent of proteolytic processing.

Exactly why the membrane potential is required for import is not clear. One possibility is that it produces an electrophoretic driving force (negative inside) on the positively charged prepieces which mediates pentration into or through the inner membrane (Fig. 2). Another is that it induces transient conformational changes in lipid and protein organization which allow the initial entry of the precursor protein into or through the membrane barrier. Both effects probably contribute to energy-dependent import.

Not all energy requirements are strictly for an energized inner mem-

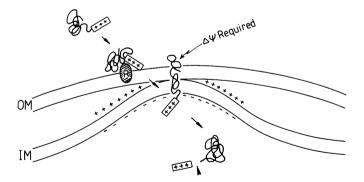


Fig. 2. A membrane potential $(\Delta \psi)$ is required for the import of proteins which must go to or through the inner membrane. Energy is not required for binding to receptors but is necessary for penetration of the positively charged amino-terminal prepiece through the inner membrane. Subsequent translocation of the remainder of the protein through the inner membrane, or movement away from contact sites (i.e., inner membrane proteins), does not require the continued presence of $\Delta \psi$. Proteolytic processing is also independent of energy. OM, Outer membrane; IM, inner membrane; R, receptor.

brane. For example, degredation of endogenous ATP, by the enzyme apyrase, reduced the import of ATPase $F_{1\beta}$ into Neurospora crassa mitochondria even in the presence of a membrane potential, whereas subsequent addition of ATP or GTP restored import (Pfanner and Neupert, 1986). Nonhydrolyzable ATP analogues also blocked the import of mitochondrial precursor proteins (Pfanner and Neupert, 1986: Eilers et al., 1987; Chen and Douglas, 1987), indicating that cleavage of the nucleoside triphosphate (NTP) phosphodiester bond is necessary. It has been suggested that NTPs maintain or confer an import-competent conformation in mitochondrial precursor proteins. This is supported by experiments in which the proteolytic sensitivity of precursor proteins is greater in the presence of NTPs (Pfanner et al., 1987; Verner and Schatz, 1987), indicating that a less folded conformation is sustained by NTP hydrolysis and that such a conformation is necessary for import. The requirement for NTPs depends primarily on the mature part of the precursor protein. For example, precursors having identical presequences but different mature polypeptides required different concentrations of NTPs for optimal import (Pfanner et al., 1987). It appears that NTPs are necessary for confering import-competence during all steps that precede and include the interaction of the precursor with the outer membrane (Pfanner et al., 1987: Eilers et al., 1987). In addition, maturation steps for some imported proteins require NADH. For example, the covalent attachment of heme to apocytochrome c and concomitant translocation across the outer membrane is dependent on NADPH in yeast (Basile et al., 1980) and NADH in N. crassa (Nicholson et al., 1987). Similarly, the second processing step of cytochrome c_1 , which is accompanied by covalent heme attachment, is also dependent on NADH (Teintze et al., 1982; Schlever and Neupert, 1985). The second processing step of the Fe/S protein of the bc_1 complex requires NADH (F.-U. Hartl and W. Neupert, unpublished), presumably for the Fe/S cluster formation. Maturation of cytochrome oxidase II. a mitochondrial translation product, also requires NADH (W. Driever, R. Cook, and W. Neupert, unpublished). These proteins all have the common feature of having iron, either in heme or as nonheme Fe/S clusters.

VI. CYTOSOLIC COFACTORS

By virtue of the elaborate mixtures which are required for the cell-free synthesis of precursor proteins, import reactions *in vitro* contain many components. In the few cases where mitochondrial precursor proteins could be purified or where minimal amounts of cell-free translation mixtures have been used, a number of potential "cytosolic" cofactors which are required for import have been identified. These cofactors are present both in reticulocyte lysates and in homologous postribosomal cytosol preparations. They fall into three broad classes: (i) soluble low molecular weight components; (ii) proteins; and (iii) RNA.

When a reticulocyte lysate translation mixture containing the newly synthesized precursor to rat ornithine carbamovltransferase (OTC) was passed over a Sephadex G-25 column, the precursor, recovered in the excluded fraction, could no longer by imported into mitochondria. Import of the precursor could be restored by fresh unlabeled reticulocyte lysate mixture but not by its individual components, including Mg^{2+} , K^+ , or ATP (Argan *et al.*, 1983). The reticulocyte lysate itself, without additives for translation, completely restored import. In an independent report, the postribosomal supernatant of the reticulocyte lysate, which had been dialyzed, stimulated the import of pre-OTC severalfold (Miura et al., 1983). The stimulating activity of the added dialyzed lysate was inactivated by either pretreatment with trypsin or heat denaturation, suggesting that the cofactor is a protein. The cofactor was further characterized by examining requirements for the import of pre-OTC, which had been purified by immunoaffinity chromatography, into mitochondria (Argan and Shore, 1985). When pre-OTC was mixed with the untreated lysate, the cofactor bound the precursor to form a 5 S complex. The pre-OTC in the isolated 5S complex was imported into mitochondria without a requirement for extra lysate. When mitochondria were pretreated with reticulocyte lysate and then reisolated, import of purified pre-OTC did not occur. However, when pre-OTC plus reticulocyte lysate was mixed with mitochondria at 4°C. 50% of the pre-OTC bound to the mitochondrial surface and could be imported when the mitochondria were isolated and incubated at 30°C. The import factor appears to be necessary for the import-competent delivery and binding of pre-OTC to mitochondria.

The purified precursor to the F_1 ATPase β subunit is poorly imported into yeast mitochondria. In the presence of the cytosolic fraction from yeast or reticulocytes, however, import and processing was stimulated 4to 8-fold (Ohta and Schatz, 1984). The cofactor was nondialyzable, protease sensitive, and had an apparent molecular mass of 40 kDa. Similar stimulation of import of the *in vitro* synthesized cytochrome b_2 precursor by unlabeled reticulocyte lysate indicated that cofactors may be necessary for other proteins as well. Again, the cofactor appeared to aid the correct association of the precursor with the mitochondrial surface.

A cytoplasmic RNA component has also been implicated in the import of several proteins into rat liver mitochondria. Posttranslational treatment with RNase of reticulocyte lysates containing newly synthesized precursor proteins inhibited subsequent import into mitochondria (Firgaira *et al.*, 1984). The cofactor and OTC precursor fractionated as a 400 kDa complex with characteristics of a ribonucleoprotein. On the other hand, the cofactor which stimulated the import of purified OTC precursors was not sensitive to RNase (Argan and Shore, 1985). The import of F_1 ATPase β subunit and citrate synthase precursors into yeast mitochondria was also inhibited by pretreatment of the reticulocyte lysate (in which they were synthesized) with RNase; however, removal of the ribosomes by centrifugation abolished the sensitivity of import to RNase, suggesting that the RNA cofactor is not a specific component necessary for import but that degraded ribosomes inhibit import (Burns and Lewin, 1986). In contrast, RNase treatment of reticulocyte lysate postribosomal supernatants containing newly synthesized ATPase $F_1\beta$ inhibited binding and import into *Neurospora crassa* mitochondria (N. Pfanner and W. Neupert, unpublished). The role of putative RNA cofactors requires further investigation.

Protein and RNA cofactors present in cytosolic fractions may serve a number of possible functions during import. For example, they may stabilize precursor proteins against premature proteolytic digestion in the cytosol or mediate conformational arrangements which are necessary for import competence. These cofactors appear to be necessary for the specific binding of precursors to mitochondria but not for subsequent stages of import. Specific cofactors have not yet been isolated so that it cannot be ruled out that they may act in a nonspecific manner by, for instance, preventing the small amounts of precursor proteins from aggregating. Whether such cofactors are important *in vivo* is unknown.

The import of apocytochome c into mitochondria is also dependent on a cytosolic or reticulocyte lysate cofactor. In this case, however, the stimulatory component is a low molecular weight, heat-stable factor which is not sensitive to proteases. In yeast, the cofactor can be substituted by an NADPH-regenerating system (Taniuchi *et al.*, 1982), but in *N. crassa* the cofactor appears to serve some other function (Nicholson *et al.*, 1987). It is not involved in the binding of apocytochrome c to mitochondria, but is necessary for enzymatic attachment of heme and subsequent translocation across the outer membrane.

VII. TRANSLOCATION CONTACT SITES

Proteins which are imported into the mitochondrial matrix or inner membrane must cross two membrane barriers to reach their final location. The question arises as to whether transport across the outer and inner membrane occurs in two distinct steps, with a soluble intermediate in the intermembrane space, or whether the inner and outer membranes come close enough together to be spanned and crossed in a single event. For proteins imported into the inner membrane or matrix of *Neurospora crassa* mitochondria, the latter mechanism appears to be the case. These translocation contact sites have been demonstrated for the import of the F_1 ATPase β subunit and cytochrome c_1 (Schleyer and Neupert, 1985), the Fe/S protein of bc_1 complex (Hartl *et al.*, 1986), and the ADP/ATP carrier (Pfanner and Neupert, 1987).

Membrane-spanning intermediates could be detected when translocation was impeded by importing the precursors of ATPase $F_1\beta$ or cytochrome c_1 at low temperatures (4–12°C). Under these conditions, translocation intermediates were accumulated which had penetrated far enough through the inner membrane to be processed by the matrix-localized processing peptidase but which still had the major portion of the polypeptide exposed to the outer surface of the outer membrane since they could be digested with externally added proteases (Schlever and Neupert, 1985). Import to this stage was dependent on a membrane potential. When translocation intermediates spanning contact sites were accumulated this way. they could be subsequently chased into a protease-insensitive location by raising the temperature to 25°C in a step that was independent of the membrane potential. Similarly, complete transport across the mitochondrial membranes could be blocked by prebinding the precursor proteins to specific antibodies generated against the mature size proteins. When incubated with mitochondria, the amino terminus of the antibody-bound precursors penetrated far enough into the matrix to be proteolytically processed while the major part of the precursor was retained by the antibodies outside the mitochondria in a location susceptible to externally added proteases. These experiments indicate that (i) the ATPase $F_1\beta$ and cvtochrome c_1 precursors first entered the matrix by their amino termini in a step that is dependent on a membrane potential; (ii) the membrane potential is required only for import of the amino-terminal prepiece which is then sufficient to trigger the transmembrane movement of the remainder of the polypeptide chain; and (iii) transport across the mitochondrial membranes occurs via translocation contact sites in which the outer and inner membranes come close enough together to be simultaneously spanned by the imported polypeptide.

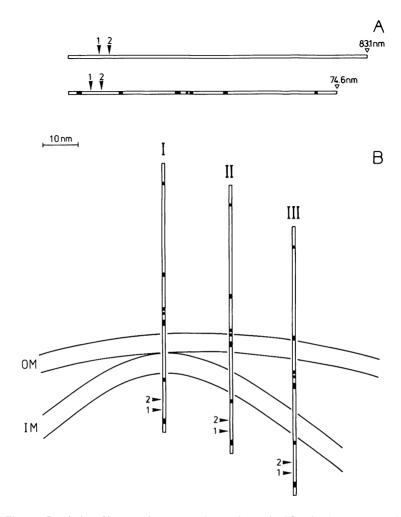
Sites of contact between the outer and inner mitochondrial membranes have been visualized by transmission electron microscopy (Hackenbrock, 1968). They appear to be stable structures since they are visible in mitochondria in both the condensed and orthodox conformations. It was estimated that there were 115 of these sites in a 1 μ m diameter mitochondrion from rat liver. Similar regions of contact have been observed in mitochondria that were prepared for electron microscopy by freeze-etching (van Venetie and Verkleij, 1982). Interpretation of the fracture plane, which jumped back and forth between the outer and inner limiting membranes, suggested that semifusion of the membranes had occurred in which nonbilayer lipids (specifically hexagonal II phase lipids) were involved.

Recently, the sites where mitochondrial precursor proteins form translocation intermediates spanning both membranes were correlated to the morphological contact regions (Schwaiger et al., 1987). The precursor of the F_1 ATPase β subunit, synthesized in reticulocyte lysate, was prebound to a specific antibody directed against the mature protein and then incubated with mitochondria. The antibody prevented the protein from being completely imported into mitochondria, but the amino-terminal prepiece was removed by the matrix-localized processing peptidase. When the antibody-bound pre-F₁ β was tagged by protein A-gold and visualized by electron microscopy, the gold particles were exclusively localized in regions of contact between inner and outer membranes. These contact sites had three distinct characteristics. First, they appeared to be stable structures. Mitochondria which had been treated with low concentrations of digitonin to disrupt the outer membrane still contained regions of contact between the inner membrane and outer membrane fragments. This agrees with the persistent occurrence of contact sites in condensed versus orthodox states. Second, contact site formation did not require precursor proteins. Mitochondria which had been pretreated with digitonin were able to mediate protein import. Therefore, contact sites seem to be preformed to facilitate import as opposed to being formed as a conseauence of the presence of precursor proteins. And third, the outer membrane was necessary for contact site-mediated import. When mitochondria were pretreated with digitonin (to create mitoplasts), then incubated with antibody-bound $F_1\beta$, none of the protein A-gold particles was associated with the inner membrane, but they were associated with the remaining contact regions. Similarly, intact mitochondria which were shaved with trypsin then treated with digitonin did not import pre- $F_1\beta$ while the nonprotease-treated mitochondria (also treated with digitonin) did. While this indicates that second sites on the inner membrane that recognize precursor proteins do not exist, it has been demonstrated in yeast that import into trypsin-inactivated mitochondria can be restored if the outer membrane is disrupted by osmotic shock (Ohba and Schatz, 1987b).

How contact sites mediate transmembrane transport of proteins is unclear, particularly for proteins directed to the inner membrane. One possibility is that the formation and dissipation of contact sites is in constant flux so that proteins are translocated into the sites and then pulled into the mitochondrion with the inner membrane as they are dissipated. Another possibility is that the imported proteins migrate laterally from the contact regions. Finally, inner membrane proteins may be completely transported through the contact sites to the matrix and then redirected back to the inner membrane. Whether physical contact between the two membranes is necessary for import is unknown. The shortest precursor protein shown to be imported via contact sites so far is the Fe/S protein of the bc_1 complex (231 amino acids) (Hartl *et al.*, 1986). Calculation of the minimal distance which the membranes must come together to be spanned by pre-Fe/S indicates that they do not necessarily have to make contact, but they must come very close together (i.e., 10–20 nm, Fig. 3). The constituents and events occurring at contact sites remain unclear.

VIII. PROTEOLYTIC PROCESSING

During or shortly following the translocation step, the amino-terminal prepiece of many proteins directed to the inner membrane or matrix is removed by a specific protease which is located in the matrix (Böhni et al., 1980; Mori et al., 1980; Schmidt et al., 1984). This occurs very rapidly in vivo. For example, in pulse-chase experiments in rat liver explants, the precursor for carbamovl-phosphate synthase was imported into mitochondria and processed with a half-life of 2 min (Raymond and Shore, 1981). Similarly, in yeast, the F_1 ATPase β subunit precursor was imported and processed with a half-life of 0.5 min (Reid and Schatz, 1982b). Proteolytic processing must normally occur immediately on exposure of the precursor proteins to the matrix protease since precursor proteins cannot normally be detected in mitochondria. Processing, however, is not obligatory for import since the precursors to F_1 ATPase β and IX subunits could be imported into mitochondria when proteolytic processing was blocked with o-phenanthroline (Zwizinski and Neupert, 1983). Similarly, the precursor of the bc_1 complex Fe/S protein could be imported and did accumulate in the mitochondrial matrix when processing was blocked (Hartl et al., 1986).


The matrix proteases identified and characterized in yeast, rat, and *Neurospora* mitochondria share similar properties: (1) the protein is a soluble component of the mitochondrial matrix; (2) it has a neutral pH optimum; (3) it is not affected by inhibitors of serine proteases [i.e., 4-nitrophenyl phosphate (PMSF)]; (4) it is sensitive to divalent cation chelators (i.e., *o*-phenanthroline); and (5) activity is stimulated by divalent cations such as Co^{2+} , Mn^{2+} , and Zn^{2+} (which can also reverse chelator inhibition; Böhni *et al.*, 1980; McAda and Douglas, 1982; Mori *et al.*, 1980; Miura *et al.*, 1982; Conboy *et al.*, 1982; Schmidt *et al.*, 1984). In

whole mitochondria, only *o*-phenanthroline inhibits processing activity, whereas chelators such as ethylenediaminetetraacetic acid (EDTA) or bathophenanthroline, which cannot penetrate the inner membrane, do not. Partially purified preparations of the protease are inhibited by all these chelators and also by nucleoside triphosphates (Böhni *et al.*, 1983). In addition, activity was reported to be specifically inhibited in whole cells (isolated hepatocytes) by rhodamine 123 and 6G, and it was described to occur without affecting the membrane potential (Morita *et al.*, 1982; Kolarov and Nelson, 1984; Kuzela *et al.*, 1986). The underlying mechanism is not understood, but inhibition could not be overcome with excess divalent cations.

The matrix-located peptidase has been partially purified from yeast mitochondria. In one report, activity was purified 200-fold over whole mitochondria (McAda and Douglas, 1982). When analyzed by gel filtration, the protease had an apparent molecular weight of 150,000, and activity correlated best with a 59 kDa protein subunit identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In another study where the protease activity was enriched 100-fold over whole mitochondria, the partially purified enzyme migrated with an apparent molecular weight of 115,000 but displayed 10 protein bands on SDS-PAGE, none of which corresponded to the 59 kDa band identified in the former study (Böhni *et al.*, 1983). The matrix protease was found to be a nuclear gene product which itself must be imported into mitochondria.

The matrix-localized peptidase has been purified to homogeneity from N. crassa mitochondria. Activity was enriched 5000-fold over whole mitochondria by a series of purification steps and displayed two bands on SDS-PAGE (52 kDa and 57 kDa; Hawlitschek *et al.*, 1988). When the two subunits were separated, neither was able to process precursor proteins. Activity was fully restored, however, when they were recombined. Activity of the matrix-localized processing peptidase depends on the presence of both proteins, though the contribution of each is as yet unclear.

Some imported mitochondrial proteins are proteolytically processed in two distinct steps. This has been demonstrated in yeast cytochrome b_2 (Gasser *et al.*, 1982b; Reid *et al.*, 1982; Daum *et al.*, 1982b), yeast and *Neurospora* cytochrome c_1 (Gasser *et al.*, 1982b; Ohashi *et al.*, 1982; Teintze *et al.*, 1982; Schleyer and Neupert, 1985), yeast cytochrome cperoxidase (Reid *et al.*, 1982), *Neurospora* ATPase subunit IX (Schmidt *et al.*, 1984), and the Fe/S protein of bc_1 complex in yeast (Sidhu and Beattie, 1983) and *Neurospora* (Hartl *et al.*, 1986). The precursor for rat liver OTC was originally thought to be processed in two steps as well, with the transient formation of an intermediate size protein (Mori *et al.*, 1980; Kraus *et al.*, 1981; Miura *et al.*, 1982; Conboy *et al.*, 1982); how-

Fig. 3. Proximity of inner and outer membranes is required for simultaneous crossing by imported precursor proteins. Components are drawn approximately to scale. (A) The shortest protein demonstrated to be imported via translocation contact sites to date is the Fe/S protein of the bc_1 complex (231 amino acids). The approximate linear length (at 0.36 nm/residue) is 83.1 nm. When compression owing to a helical structure is included (yielding 0.15 nm/residue), as predicted from the primary sequence (Chou and Fasman, 1974; Argos *et al.*, 1978), the contour length is 74.6 nm. Helical regions are indicated by shaded boxes. Sites of proteolytic processing are indicated by arrowheads. (B) Translocation intermediates are shown where the amino terminus protrudes far enough into the matrix to be processed by the chelator-sensitive matrix peptidase but the protein still has a major part outside the mitochondrion where it is accessible to externally added proteases. Three contact proximities are illustrated: (I) membranes in contact, (II) a 5 nm space between membranes as observed by electron microscopy (Schwaiger *et al.*, 1987), and (III) estimated maximum

ever, evidence now suggests otherwise since: (i) "intermediate" OTC can be found outside of mitochondria while the processing peptidase is located in the mitochondrial matrix (Kolansky *et al.*, 1982); (ii) intermediate size OTC cannot be detected *in vivo* (Mori *et al.*, 1981; Morita *et al.*, 1982); and (iii) apparent "intermediate" OTC is found in the absence of mitochondria and does not associate with mitochondria *in vitro* (Argan *et al.*, 1983).

The first and second processing events appear to be performed by distinct proteases in different submitochondrial locations, with the possible exception of N. crassa ATPase IX processing. The ATPase IX precursor is imported to the inner membrane where its amino-terminal extension protrudes into the matrix and is processed in two steps by the chelator-sensitive matrix peptidase (Schmidt *et al.*, 1984). Evidence that the same enzyme is responsible for both cleavage steps includes the following: (1) both processing steps take place in the matrix, (2) both steps have the same sensitivity to chelating agents, (3) the two cleavage sites share amino acid sequence homology (hydrophobic-polar-Lys-Arg-small/bulky hydrophobic), and (5) the purified processing peptidase performs both cleavage steps (G. Hawlitschek and W. Neupert, unpublished).

Other than ATPase IX, precursor proteins which are processed in two steps share common features (Table III): (i) their respective mature forms are exposed to the intermembrane space (cytochrome b_2 and cytochrome c peroxidase are soluble components of the intermembrane space, whereas cytochrome c_1 and Fe/S of bc_1 complex are attached to the inner membrane but with their bulk protruding into the intermembrane space); (ii) they all make membrane-potential dependent contact with the inner membrane; (iii) the first proteolytic processing event occurs by the chelator-sensitive matrix peptidase; and (iv) the second processing event is catalyzed by a different protease.

Evidence indicates that different proteases are involved in two-step processing. First, whereas the first processing step is clearly performed by the matrix protease, the second step of cytochrome b_2 maturation is not sensitive to chelators (Daum *et al.*, 1982b). The sensitivity of the second step of bc_1 complex Fe/S protein processing to *o*-phenanthroline is believed to be due to inhibition of the Fe/S cluster formation (Hartl *et al.*, 1986), which, like attachment of heme to intermediate cytochrome c_1

separation which could still account for experimental observations (Schleyer and Neupert, 1985). Distances greater than 10-20 nm would probably produce detectable fragments from the imported part of the protein following external protease digestion. Mitochondrial membranes are assumed to be 5 nm thick. Insertion of the first processing site 10 nm past the inner face of the inner membrane is allowed for accessibility by the matrix peptidase.

TABLE III

Topology and Requirements for Mitochondrial Precursor Proteins Processed in Two Steps"

Precursor protein	Final location ^b	Two steps in vivo?	First step			Second step		
			Energy ^c	o-Phe- sensitive	Intermediate location ^b	Energy	o-Phe- sensitive ^d	Reference
Cytochrome b ₂ (yeast) Cytochrome	IMS IMS	+ ?	+ +	+ +	O-IM	_	-	Gasser et al. (1982b), Reid et al. (1982), Daum et al. (1982a,b), Reid et al. (1982), Maccecchini
c Perox- idase (yeast)	IMS	:	т	Ŧ				et al. (1979b)
Cytochrome c1 (yeast)	O-IM	+	+	+	O-IM			Gasser et al. (1982b), Ohashi et al. (1982)
Cytochrome c1 (Neuro- spora)	O-IM	+	+	+	O-IM	+(NADH)		Teintze et al. (1982), Schleyer and Neupert (1985), B. Schmidt and W. Neupert (un- published) Hartl et al. (1987)
Fe/S of bc ₁ complex (Neurospora)	O-IM	+	+	+	М	+(NADH)	+	Hartl et al. (1986)
ATPase IX (Neurospora)	IM	+	+	+			+	Schmidt et al. (1984)

^{*a*} Features of import for proteins which are processed in two steps are summarized. The energy for the first processing step is required for transport of the precursor to or through the inner membrane and not for proteolytic activity itself. Features of the second processing step are described only where conversion of the intermediate to the mature form has been examined independently of the first processing step. Areas left blank were not determined.

^b IMS, intermembrane space; O-IM, outer surface of inner membrane; M, matrix.

^e Energy required is a membrane potential unless otherwise indicated.

^d o-Phe, o-phenanthroline.

(Ohashi *et al.*, 1982), might precede the second proteolytic processing step. Second, the topological arrangement of the intermembrane cytochromes b_2 and c_1 (and probably cytochrome *c* peroxidase) presumably exposes the second processing site to the intermembrane space (Daum *et al.*, 1982b; Ohashi *et al.*, 1982; Reid *et al.*, 1982). Third, the partially purified matrix peptidase cleaves cytochome b_2 , c_1 , and cytochrome *c* peroxidase precursors only to their intermediate size (Gasser *et al.*, 1982b; Reid *et al.*, 1982). Finally, a mutation in yeast blocks the second processing step of cytochrome b_2 without affecting the first step (Pratje and Guiard, 1986).

Two-step processing of these proteins has been demonstrated *in vivo*, with the exception of cytochrome c peroxidase (Reid *et al.*, 1982; Maccecchini *et al.*, 1979b) in which an intermediate size protein cannot be detected (presumably for kinetic reasons). For some proteins, NADH is required for the second processing step. As discussed in Section V, this may be necessary for heme attachment or Fe/S cluster formation and not for proteolytic processing itself. In these cases, such modifications appear to be obligatory and precede the second processing step.

Mutants have been isolated in yeast which are defective in proteolytic processing activity. In an attempt to identify essential components in the pathway of protein import, two complementation groups of temperaturesensitive mutants, defective in the import of mitochondrial proteins, were identified (Yaffe and Schatz, 1984). Termed mas1 and mas2 (mitochondrial assembly), the mutants were normal at the permissive temperature (23°C) but accumulated F_1 ATPase β subunit precursor at 37°C and stopped growing after 2-3 generations. The masl mutants were deficient in the matrix-localized protease activity and could not process a number of mitochondrial precursor proteins (Yaffe et al., 1985). The phenotype suggested that processing of imported proteins is essential for mitochondrial function (though processing is not necessary for import). Another temperature-sensitive mutation in yeast has also been identified which was defective in the second processing step of cytochrome b_2 but not cytochrome c peroxidase (Pratje et al., 1983; Pratje and Guiard, 1986). In addition, the mutant was unable to process the precursor of cytochrome oxidase subunit II, a mitochondrial gene product. Assuming that the mutation is in a structural gene coding for a processing enzyme, this suggests that (i) the second processing protease differs from the first step protease; (ii) the processing of the mitochondrial gene product COX II is catalyzed by the same protease, and probably in the same location, as a second step protease; and (iii) the second processing step for cytochrome b_2 and cytochrome c peroxidase occurs by different proteases. All evidence taken together, the minimum number of distinct processing peptidases in mitochondria now appears to be three.

TABLE IV

Comparison of Sites of Proteolytic Processing of Imported Mitochondrial Precursor Proteins^a

One-step Processing	-10	+10
1. Cytochrome oxidase IV (N. crassa)		NAGTKPVPPH
2. Cytochrome oxidase V (N. crassa)		ASTMPISNPT
3. Cytochrome oxidase IV (yeast)	RTLCSSRYLL	OOKPVVKTAQ
4. Cytochrome oxidase V (yeast)	GLSRITSVRF	
5. Cytochrome oxidase VI (yeast)		SDAHDEETFE
6. Mn-superoxide dismutase (yeast)	SLLSTTARRT	KVTLPDLKWD
7. Aspartate aminotransferase (chicken)	PRRAAATARA	SSWWSHVEMG
8. Ornithine aminotransferase (rat)	RGLRTSVASA	TSVATKKTEQ
9. Ornithine carbamoyltransferase (rat)		. + +- SQVQLKGRDL
10. Carbamoyl-phosphate synthase I (rat)	+ + WDFSRPGIRL	LSVKAQTAHI
11. Aspartate aminotransferase (porcine)	GLAAAASARA	SWWAHVEMGP
12. Adrenodoxin (bovine)		SSSEDKITVH
13. Cytochrome oxidase IV (bovine)		ANGSVVKSED
14. Cytochrome P-450 (SCC) (bovine)	HRVGTGEGAG	ISTKTPRPYS
15. Ornithine carbamoyltransferase (Human) RNFRCGQPLQ	NKVQLKGRDL
Two-step processing	First Site	Second Site
+10	-10	+10 -10
16. ATPase IX (N. crassa)	VRVAQVSKRTIQTGSPLQTL	
17. Rieske Fe/S of bc_1 complex (N. crassa)	AAAPARAVRALTTSTALQGS	LTTSTALQGSSSSTFESP
18. Cytochrome c peroxidase (yeast)	?	NWGKAAALASTTPLVHVASV
19. Cytochrome b ₂ (yeast)	?	LNWHNGQIDNEPKLDMNKQK
20. Cytochrome c_1 (yeast)	?	LYADSLTAEAMTAAEHGLHA
21. ATPase IX P1 (bovine)	?	REFOTSVVSRDIDTAAKFIG d
22. ATPase IX P2 (bovine)	?	RSFOTSAISRDIDTAAKFIG d

^a The amino acid sequences flanking the sites of proteolytic processing of imported mitochondrial proteins are listed by the single letter amino acid code (left to right, amino to carboxy terminus). The vertical lines indicate the sites of cleavage. Basic, acidic, and hydroxylated amino acids are indicated by the symbols +, -, and \cdot , respectively, above the primary sequence. The proteins are grouped by the organism in which they occur and then according to rough evolutionary order. Only sequences in which the cleavage sites have been positively identified are presented. References are the same as those indicated in Table I. In addition, the processing site for cytochrome oxidase IV from Neurospora crassa was determined by Sachs et al. (1986).

^b The second processing step of *N*. crassa ATPase IX is catalyzed by the same protease as the first step (Schmidt et al., 1984). Comparison of the second processing site with first site sequences might be more appropriate.

^c Only eight amino acids preceding the second processing site are presented since the first processing step occurs at this position.

^d Homology of bovine ATPase IX presequences (P1 and P2) with ATPase IX from N. crassa suggests that the bovine prepieces might also be processed in two steps. This has not been demonstrated yet.

17. Synthesis and Assembly of Mitochondrial Proteins

What are the recognition sites for proteolytic processing? A comparison of the amino acid sequences flanking the cleavage sites (Table IV) does not indicate a clear consensus sequence. There may be a number of reasons why very few trends are apparent. (1) the site specificity may vary between different organisms; however, a certain degree of conservation must exist since heterologous import and processing can occur. (2) Processing could be catalyzed by more than one chelator-sensitive matrix protease with different specificities. First site processing and processing of proteins in which the prepiece is removed in a single step, however, all appear to be catalyzed by the same chelator-sensitive matrix peptidase. The partially purified matrix peptidase from yeast processed precursors to F_1 ATPase β and α subunits, cytochrome oxidase IV, citrate synthase (Böhni et al., 1983), and cytochrome oxidase V (Cerletti et al., 1983). Similarly, the purified *Neurospora* matrix peptidase processed all precursor proteins tested to date (G. Hawlitschek and W. Neupert, unpublished). (3) The specificity of the matrix peptidase may depend on regions within the prepiece or mature part of the protein distal from the actual cleavage site. For example, cytochrome oxidase IV is normally processed between amino acids 25 and 26 to remove the 25 amino acid prepiece. When only the first 22 amino acids of the COX IV prepiece were fused to DHFR, thus removing the normal cleavage site, the fusion protein was still processed, but between amino acids 17 and 18 instead (Hurt et al., 1985a). The sequence of amino acids flanking the new cleavage site show no homology to the authentic site, suggesting that other elements in the prepiece may contribute to the signal for processing. Processing of a fusion protein consisting of the presequence of pre-COX IV and DHFR by the solubilized matrix peptidase was blocked when even small deletions were made at the very amino terminus of the prepiece (Hurt et al., 1987).

In some cases, the specificity of processing has requirements in the mature sequence. Correct processing of the rat OTC prepiece occurred when the first 60 amino-terminal amino acids of the pre-OTC, containing the 32 amino acid prepiece, were fused to asparagine synthase; however, incorrect processing at a site 14 amino acids closer to the amino terminus occurred when only the first 37 amino acids (still containing the full 32 amino acid prepiece) were fused (Nguyen *et al.*, 1986). The processing of human pre-OTC, also containing a 32 amino acid prepiece, was inhibited when deletions or substitutions were made between amino acids 8 and 22 of the prepiece. In addition, the glutamine at position -1 was also critical for proteolytic cleavage (Horwich *et al.*, 1986). Similarly, small deletions up to 17 amino acids away from the ATPase $F_1\beta$ cleavage site also prevented processing (Vassarotti *et al.*, 1987a).

How processing peptidases recognize the correct sites of cleavage is unclear. Undoubtedly, conformation plays an important role in the recognition of cleavage sites. The alkali-denatured OTC precursor, for example, was not processed by a partially purified form of the matrix peptidase (Miura *et al.*, 1986). Sequences around the cleavage sites show only minor similarities (Table IV, sequences 1-17). (1) Position -1 rarely has a charged amino acid. In lower eukarvotes it is usually a hydrophobic amino acid while in higher eukarvotes it is more often an uncharged polar amino acid. (2) In position -2, 10 of 17 amino acids are positively charged, mostly in lower eukarvotes. When not positively charged, the -2 amino acid is usually hydrophobic with an aliphatic side chain. (3) Charged amino acids are also rare in the +1 and +2 positions, but hydroxvlated amino acids (particularly serine) frequently occur. Despite no obvious consensus sequence, however, proteolytic processing is highly specific. Neither mature mitochondrial proteins nor nonmitochondrial proteins are cleaved by the matrix-located peptidase (Böhni *et al.*, 1983).

IX. MITOCHONDRIAL GENE PRODUCTS

Not all mitochondrial proteins are nuclear gene products which are imported from their site of synthesis in the cytosol. A small number (<10%) are coded for by the mitochondrial genome and are synthesized on 70 S mitochondrial ribosomes which are associated with the inner face of the inner membrane. The mitochondrial genomes in a number of species have been completely or partially sequenced. They vary in size from 17 kilobases in humans (Anderson et al., 1981) to over 200 kilobases in plants (Palmer and Shields, 1984). Despite this variation, however, they code for a similar complement of proteins. These usually include apocytochrome b, cytochrome oxidase subunits I, II, and III, ATPase subunits VI and VIII, and several subunits from the NADH dehydrogenase complex (for review, see Breitenberger and RaiBhandary, 1985). Yeast, fungi, and plant mitochondrial genomes also code for other proteins. For example, yeast and fungi mitochondria contain genes for the S5 protein of the small ribosomal subunit, ATPase subunit IX (which is dormant in Neurospora crassa), and intron-coded proteins involved in RNA maturation. Plant mitochondrial genomes also encode ATPase $F_1\alpha$. Finally, information coding for mitochondrial transfer RNAs and for ribosomal RNAs are contained within the genome.

Why mitochondria need a distinct genome at all and why the specific proteins that they encode are so highly conserved is unknown. One theory is that the hydrophobic nature of the mitochondrial gene products necessitates their synthesis within the organelle. This, however, seems unlikely to be the only reason since ATPase IX, a very hydrophobic protein, is synthesized in the cytosol of N. crassa containing a hydrophilic amino-terminal prepiece to mask the hydrophobic mature part (Jackl and Sebald, 1975; van den Boogaart et al., 1982b). In fact, the ATPase IX prepiece has been shown to be able to mediate the import of ATPase VIII, an authentic mitochondrial gene product, back into mitochondria (Gearing and Nagley, 1986), although the shorter COX VI prepiece did not. On the other hand, the S5 ribosomal protein is water soluble but is still a mitochondrial gene product in some species. A second possibility is that the mitochondrial genome is an evolutionary remnant and that most of the genes from the bacterial endosymbiont were transferred to the nucleus of the host cell, but the process was incomplete. A third possibility is that the mitochondrial gene products form nucleating points around which the remainder of respiratory complexes are built. This cannot be absolutely critical though, since ATPase, for example, is assembled into a functional, albeit somewhat less efficient, complex when the subunits encoded by the mitochondrial genome are absent (Schatz, 1968; De Jong et al., 1979; Marzuki and Linnane, 1985).

A final hypothesis is that the cotranslational protein export mechanism existed prior to the evolutionary endosymbiotic event. Accordingly, the genes for proteins which had amino acid sequences within them that resembled the export signal sequence were retained in the mitochondrial genome so that they would not be mistakenly exported. Indeed, it has been determined that most mitochondrial gene products from *Xenopus* and yeast seem to contain signal sequence-like segments near the amino terminus (von Heijne, 1986b). Eukaryotic cells maintain a distinct genome in the mitochondrion at great expense, since a large number of proteins must be imported simply to accommodate a separate protein synthetic system.

Mitochondrial protein synthesis occurs on ribosomes which are associated with the inner mitochondrial membrane, suggesting that translation is coupled to the insertion of the newly synthesized proteins into the membrane. Even the soluble S5 ribosomal protein, however, is synthesized on membrane-bound ribosomes (Marzuki and Hibbs, 1986). Cytochrome oxidase II is synthesized as a larger precursor in *N. crassa* (Machleidt and Werner, 1979; van den Boogaart *et al.*, 1982a) and in yeast (Sevarino and Poyton, 1980). In both cases, the higher molecular weight precursor can be chased to the mature size protein in the absence of protein synthesis (Sevarino and Poyton, 1980; Driever *et al.*, 1987). Furthermore, the newly synthesized COX II precursor from *Neurospora* was not integrated into the inner membrane, demonstrating that assembly can occur posttranslationally. Processing of the COX II precursor was catalyzed by a protease which is located in the intermembrane space, and formation of the mature size protein is dependent on NADH but not on a membrane potential. Cytochrome oxidase II is probably not representative of the other mitochondrial gene products since it is synthesized with an amino-terminal prepiece while others from the mitochondrial genome are not (with the possible exception of COX I; Burger *et al.*, 1982).

X. ASSEMBLY AND COORDINATION

Many of the proteins which are imported into mitochondria are subunits of respiratory complexes. Therefore, assembly into functional complexes represents the final step in the import pathway. What sequence of events occurs during assembly, and how is the supply of subunits coordinated and regulated?

Since two genetic systems are responsible for the synthesis of proteins for most respiratory complexes, it would seem logical that they would be synchronized in some way. No doubt there is some long-term regulation of the mitchondrial genome by the nucleus since most of the proteins comprising the mitochondrial transcription/translation system are nuclear gene products. In the short term, however, the two systems do not appear to be tightly coupled. For example, when synthesis of mitochondrial gene products was blocked in vivo by growth of Neurospora crassa on chloramphenicol, thereby inhibiting the synthesis of cytochrome b of the bc_1 complex, normal amounts of cytochrome c_1 were synthesized in the cytosol (Weiss and Kolb, 1979). Furthermore, cytochrome c_1 was imported normally and assembled into a cytochrome *b*-deficient complex. Similarly, when overexpression of the 11 kDa subunit (a nuclear gene product) of the bc_1 complex was induced in yeast cells by transformation, it did not affect the rate of synthesis or degradation of the other subunits of the complex (van Loon et al., 1983a). The same was observed when individual subunits of the bc_1 complex (also nuclear gene products) were overexpressed, suggesting that stringent coupling does not exist (van Loon et al., 1983b).

Stringent coordination may not occur at the level of translation for the nuclear gene products either. Cytoplasmically made subunits for the ATPase, the bc_1 complex, and cytochrome oxidase are synthesized as individual subunits, not as polyproteins (Lewin *et al.*, 1980; Mihara and Blobel, 1980; van Loon *et al.*, 1983c). Notwithstanding this apparent lack of coordination, excess unincorporated subunits do not accumulate in mitochondria. One suggestion has been that surplus amounts of unas-

17. Synthesis and Assembly of Mitochondrial Proteins

sembled subunits are simply eliminated by proteolytic digestion (Luzikov, 1986) regardless of the waste of cellular resources by such a process.

Despite the apparent lack of coordination of synthesis of subunits in these experiments, nuclear genes are involved in regulating the expression of the mitochondrial genome. This appears to occur at three levels: (i) control of mRNA processing, (ii) control of translation, and (iii) posttranslational modification (e.g., proteolytic processing of pre-COX II by a nuclear-coded protease; Pratie et al., 1983; Pratie and Guiard, 1986). These systems have been studied best in Saccharomyces cerevisiae. Yeast mitochondrial genes contain introns, separating the exons of a gene, which must be spliced out prior to translation. These intervening sequences are removed from pre-mRNAs by self-splicing mechanisms and by protein-assisted splicing. In the latter case, these proteins (termed mRNA maturases) are encoded by either mitochondrial intron open reading frames (Weiss-Brummer et al., 1982; Carignani et al., 1983; Guiso et al., 1984; Jacq et al., 1984) or are nuclear gene products (Fave and Simon, 1983; Pillar et al., 1983; McGraw and Tzagoloff, 1983; Dieckmann et al., 1984) and have been shown to be necessary for processing of COX I and apocytochrome b pre-mRNAs. The interesting feature of these studies is that the maturation proteins appear to be specific for individual mitochondrial gene transcripts so that the expression of mitochondrial gene products can be selectively controlled by the activity of the different nuclearencoded mRNA maturases

Nuclear gene products are also required for the specific translation of mitochondrial mRNAs (Fox, 1986). For example, the yeast *pet494* mutant has normal levels of fully processed COX III mRNA. A nuclear gene product was found to be required to promote the translation of the COX III mRNA that appeared to interact with the 5'-untranslated leader (Müller *et al.*, 1984). Similar nuclear gene products were also required for the specific translation of apocytochrome b (CPB6, Dieckmann and Tzagoloff, 1985; and MK2, Rödel *et al.*, 1985) and for COX II (PET111; Fox, 1986). Though they serve similar functions, there seems to be little homology between the PET494, CBP6, and PET111 gene products. They all appear, however, to act on the 5'-untranslated mRNA leader sequence in a specific way so that translation of mitochondrial-encoded proteins can be independently controlled.

Compared to the loose coordination between nuclear and mitochondrial genomes, the assembly of individual subunits into functional complexes is a more ordered process. The best studied examples of complex assembly to date are the F_0F_1 ATPase and cytochrome oxidase. When the synthesis of yeast mitochondrial gene products was blocked by growth in the presence of chloramphenicol (De Jong *et al.*, 1979) or as in *rho*⁻ mutants

(Schatz, 1968), a correctly assembled functional ATPase was still produced which was loosely associated with the inner membrane but no longer sensitive to oligomycin. This suggests that the mitochondrial gene products (subunits VI, VIII, and IX) are not essential for either assembly or function but are required for stability of the complex and confer oligomycin sensitivity. Sequential assembly of the ATPase subunits was demonstrated in yeast mutants lacking each of the mitochondrially encoded proteins (Marzuki and Linnane, 1985). The mutant lacking subunit IX was deficient in the assembly of both VI and VIII, while the mutant lacking subunit VIII could assemble IX but not VI. This indicated that the relative order of assembly of the mitochondrial gene products was IX then VIII then VI and that sequential assembly was necessary. Each of these mutants had a functional but unstable ATPase.

A large number of components are required for the functional assembly of cytochrome oxidase. In a *N. crassa* mutant lacking COX I (COX I, II, and III are mitochondrial gene products) only the assembly of subunits V and VI occurred (Nargang *et al.*, 1978). In pulse-chase experiments in rats, COX II and III were immediately assembled while COX I arrived only after a long chase (Wielburski *et al.*, 1982). Taken together, this suggests that COX II and III are assembled first, followed by COX I, which in turn is necessary for the subsequent assembly of COX V and VI. In a yeast mutant lacking COX IV, no cytochrome oxidase activity was observed, although the mutant still contained the other mitochondrial COX subunits. This suggested that COX IV is necessary for the proper assembly of cytochrome oxidase (Dowhan *et al.*, 1985).

Cofactors such as heme, oxygen, and copper are also necessary for cytochrome oxidase assembly. In yeast, a mutant lacking heme contained no cytochrome oxidase activity. Although the mitochondria still contained subunits II, III, and IV, it had only low amounts of COX I and IV and no V or VI. The residual subunits were not assembled (Saltzgaber-Müller and Schatz, 1978). In rats, heme was shown to be necessary for the assembly of subunit I with the preassembled COX II and III (Wielburski and Nelson, 1984). COX I was predominantly associated with COX III. Yeast cells grown anaerobically did not contain assembled cytochrome oxidase. When shifted to an oxygen environment, however, subunits I and II were immediately assembled with VI and VII (Woodrow and Schatz, 1979). Cytochrome oxidase is not assembled in copper-depleted *N. crassa*, although both nuclear and mitochondrial gene products are synthesized normally (Werner *et al.*, 1974).

The coordination and assembly of functional mitochondrial complexes occurs by a series of events which are dependent on components other than the mitochondrial subunits alone. Whether assembly is controlled by factors other than the simple stoichiometric availability of components is unknown.

XI. OVERVIEW

A. Import Pathway Models

Owing to the diversity of mitochondrial proteins and their topological locations, a variety of different pathways exist to faciliate their import. We summarize what is known about the import pathways of representative proteins and what can be hypothesized.

Porin: Outer Membrane (Fig. 4). The precursor to porin differs from the mature form only in conformational arrangement, thereby allowing its solubility in the cytosol. It does not contain an amino-terminal prepiece and does not require an energized inner membrane for import. Preporin binds to its receptor at the outer face of the outer membrane and is inserted into the outer membrane where it is protected from externally added proteases. It then forms dimers and trimers. The porin pathway is probably representative of most outer membrane proteins (Pfaller *et al.*, 1985; Pfaller and Neupert, 1987, and references therein).

Cytochrome c: Intermembrane Space (Fig. 5). Cytochrome c is synthesized as apocytochrome c which does not contain covalently attached heme and has a loosely ordered conformation. Apocytochrome c spontaneously inserts partway through the lipid bilayer of the outer membrane. It is then sequestered at the inner face of the outer membrane by an apocytochrome c binding protein which in turn exposes the cysteine

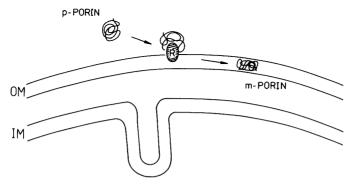
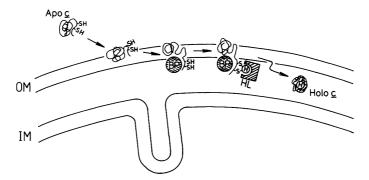
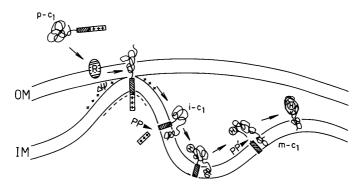




Fig. 4. Import pathway of porin into mitochondria. OM, Outer membrane; IM, inner membrane; R, receptor; p, precursor; m, mature.

Fig. 5. Import pathway of cytochrome c into mitochondria. OM, Outer membrane; IM, inner membrane; Apo c, apocytochrome c; Holo c, holocytochrome c; BP, apocytochrome c binding protein; H, heme; HL, cytochrome c heme lyase.

Fig. 6. Import pathway of cytochrome c_1 into mitochondria (according to Hurt and van Loon, 1986). OM, Outer membrane; IM, inner membrane; p, precursor; i, intermediate; m, mature; R, receptor; $\Delta \psi$, membrane potential; PP, processing peptidase; H, heme. Boxes represent prepiece segments.

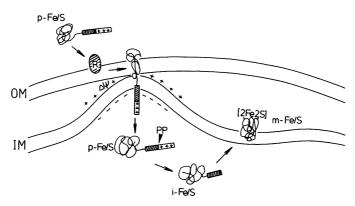


Fig. 7. Import pathway of the Rieske Fe/S protein of bc_1 complex into mitochondria. Abbreviations are as in Fig. 6.

thiols to the intermembrane space. Heme is enzymatically attached by cytochrome c heme lyase, and the resulting conformational change pulls the protein through the outer membrane. Holocytochrome c then migrates to its functional location in association with cytochrome c reductase and cytochrome c oxidase at the outer face of the inner membrane (Hennig and Neupert, 1981; Nicholson *et al.*, 1987, and references therein).

Cytochrome c₁: Intermembrane Space, Inner Membrane (Fig. 6). The cytochrome c_1 precursor is synthesized with a two-domain prepiece. Pre c_1 binds to its receptor at the outer face of the outer membrane. The amino terminus is then transloc ted through the inner membrane via contact sites in a step which is dependent on a membrane potential. The first part of the prepiece is removed by the chelator-sensitive matrix peptidase to generate intermediate c_1 . The carboxy terminus, which eventually anchors the mature protein to the inner membrane, is embedded into the inner membrane at some point following translocation across the outer membrane. Heme is covalently attached to intermediate c_1 , and the second part of the prepiece is then removed yielding the mature c_1 which is then assembled into the bc_1 complex (Ohashi *et al.*, 1982; Schlever and Neupert, 1985; Hurt and van Loon, 1986, and references therein.) The same basic pathway may be followed by cytochrome c peroxidase, which is released as a soluble protein into the intermembrane space following the second proteolytic step because it does not contain a carboxy-terminal anchoring segment. This pathway demonstrates the principles of the stop transfer model suggested by Hurt and van Loon (1986). Another possibility is that pre- c_1 is completely translocated into the matrix, then redirected back to the inner membrane like the Fe/S protein of the bc_1 complex (Fig. 7). This has been demonstrated to be the case in Neurospora crassa and also for the import of cytochrome b_2 into yeast mitochondria (Hartl et al., 1987).

Fe/S Protein of bc_1 **Complex:** Inner Membrane (Fig. 7). The precursor to the Fe/S protein is synthesized with a two-part prepiece. Pre-Fe/S binds to its receptor on the outer membrane and is then completely translocated into the mitochondrial matrix via translocation contact sites in a step which is dependent on the membrane potential. The matrix-located pre-Fe/S is then processed to the intermediate size protein by the chelator-sensitive processing peptidase. The Fe/S protein is then directed back across the inner membrane to the outer face of the inner membrane. The protein is processed to its mature form by removal of the second half of the prepiece and formation of the Fe/S cluster, but when and where this occurs are unknown (Hartl *et al.*, 1986).

ADP/ATP Carrier: Inner Membrane (Fig. 8). The ADP/ATP carrier is synthesized without a prepiece but contains stretches of positively

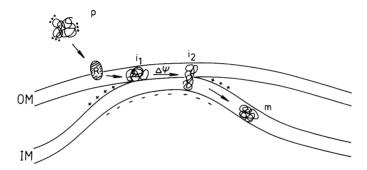


Fig. 8. Import pathway of ADP/ATP carrier into mitochondria. Abbreviations are as in Fig. 6.

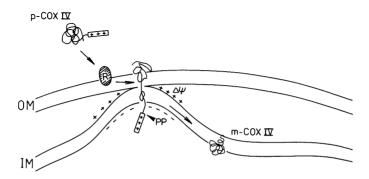


Fig. 9. Import pathway of cytochrome oxidase subunit IV into mitochondria. Abbreviations are as is Fig. 6.

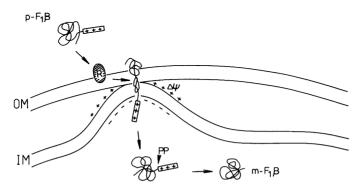


Fig. 10. Import pathway of F_1 ATPase β subunit into mitochondria. Abbreviations are as in Fig. 6.

charged amino acids which resemble mitochondrial targeting sequences. The precursor binds to its receptor and is inserted into the mitochondrial membrane where it is protected from externally added proteases. The first intermediate (i_1) is past the receptor stage but before the membrane potential-dependent stage of import. The second intermediate (i_2) is found in the presence of a membrane potential and is transported to the inner membrane via translocation contact sites. The imported ADP/ATP carrier then undergoes a conformational change, in which it acquires properties of the mature protein, followed by the formation of dimers (Schleyer and Neupert, 1984; Pfanner and Neupert, 1987). The uncoupling protein from brown fat mitochondria has similar sequence and folding characteristics (Aquila *et al.*, 1985) and is probably imported in a similar manner.

Cytochrome Oxidase IV: Inner Membrane (Fig. 9). Pre-COX IV is synthesized with an amino-terminal prepiece in the cytosol. It binds to its receptor on the outer membrane and is subsequently transported to the inner membrane by translocation contact sites in a membrane potential-dependent step. The amino-terminal prepiece, which protrudes into the matrix, is removed by the chelator-sensitive peptidase, and the mature part of the protein remains integrated in the inner membrane where it is assembled into cytochrome oxidase (Hurt and van Loon, 1986, and references therein). This mechanism is probably representative of most imported inner membrane proteins which are processed in a single step.

 $\mathbf{F}_0\mathbf{F}_1$ ATPase $\mathbf{F}_1\beta$: Matrix (Fig. 10). Pre- $\mathbf{F}_1\beta$ binds to its receptor and is transported completely into the matrix. This occurs via translocation contact sites and is dependent on a membrane potential. During or shortly following translocation, the mature $\mathbf{F}_1\beta$ is generated by removal of the prepiece by the matrix peptidase. Mature $\mathbf{F}_1\beta$ is then assembled with the other \mathbf{F}_1 ATPase subunits at the inner face of the inner membrane. Most imported matrix proteins probably follow a similar pathway (Schleyer and Neupert, 1985, and references therein).

Cytochrome Oxidase II: A Mitochondrial Gene Product (Fig. 11). Most mitochondrial gene products are probably inserted directly into the inner membrane as they are synthesized on membrane-bound ribosomes (except the S5 ribosomal protein which is released into the matrix). COX II, on the other hand, is synthesized with a prepiece (in lower eukaryotes) and can be posttranslationally inserted into the inner membrane (B). Cotranslational insertion may occur *in vivo* (A) but is not obligatory. Pre-COX II is converted to mature COX II by removal of the prepiece by a protease located in the intermembrane space and noncovalent binding of heme a and copper. The sequence in which these changes occur is unknown, but is dependent on NADH. Mature COX II is then assembled into cytochrome oxidase (Driever *et al.*, 1987).

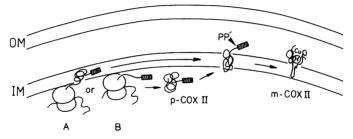


Fig. 11. Insertion pathway of cytochrome oxidase subunit II. Abbreviations are as in Fig. 6.

B. Evolutionary Considerations

A particularly interesting finding which emerged while examining the import of the Fe/S protein of bc1 complex into Neurospora crassa mitochondria is that the precursor protein was completely translocated into the matrix where it was partially processed and then redirected back across the inner membrane to its functional location on the other side facing the intermembrane space. (Hartl et al., 1986; see Fig. 7). This seemingly complex assembly pathway was explained in terms of a rerouting mechanism by which the Fe/S protein is returned to remnants of its "ancestral" assembly pathway. Following evolutionary gene transfer from the bacterial endosymbiont to the host cell nucleus, mechanisms had to evolve to return the gene product to its functional location. Rather than completely rebuild the means by which the protein was folded, assembled, and acquired the correct topology, the import pathway of the Fe/S protein has evolved to make use of preexisting mechanisms. To do this, the Fe/S protein had to be completely transported across both mitochondrial membranes back into the matrix. This was accommodated by adding a matrix targeting prepiece to the Fe/S protein (i.e., the first part of the pre-Fe/S prepiece) which allows it to enter the matrix by components which had evolved to mediate the import of other mitochondrial proteins. At this point, "ancestral" transport pathways take over to correctly insert the Fe/S protein into the inner membrane.

Indeed, the equivalent Fe/S protein from the photosynthetic bacteria *Rhodopseudomonas sphaeroides* is synthesized in the bacterial cytoplasm (comparable to the mitochondrial matrix) and transferred across the photosynthetic membrane to the side opposite the cytoplasm where, as in mitochondria, it is topologically opposed to the F_1 part of ATPase. This transfer is accompanied by a reduction in molecular weight (Gabellini *et al.*, 1985) which may be equivalent to processing of the mitochon-

Table V

Comparison of Amino-Terminal Sequences of Mitochondrial and Bacterial Proteins^a

A. Rieske Fe/S protein of bc ₁ complex N. crassa 1 2 MAPVSIVSRAAMRAAAAPARAVRALTTSTALOGSSSSTFES R. sphaeroides	SPFKGESKAAKVPDFGKYMSKAPPSTNMLFSYFMVGTMGALTAAGAKST MSHAEDNAGTRRDFLYHATAATGVVVTGAA
B. Cytochrome c ₁ Yeast MFSNLSKRWAORTLSKSFYSTATGAASK R. sphaeroides	2 SGKLTOKLVTAGVANAGITASTILYADGLTAEAMTAAEHGLHAPAYAMG MKKILISAMGALVLGSCAALANSNVODHAFG
C. Cytochrome c (N. crassa) and c ₂ (R N. crassa R. capsulata	. capsulata) MGFSAGDSMKGANLFKTRGAGEHTLEEGGAN MKISLTAATVAALVLAAPAFAGDAAKGEKEEN-KGKTEHSIIAPDGT
D. Cytochrome oxidase II N. crassa Maize Yeast	MGLLFNNLIMNFDAPSPWGIYF MILRSLECRFLTIALCDAAEPWOLGS MLDLLRLOLTTFINN-DYPTPYACYF

^a (A – C) Amino acid sequences of the amino terminus of mitochondrial precursor proteins are compared to their equivalent in bacteria. Arrows indicate the sites of proteolytic processing. The estimated region containing the first processing site of yeast cytochrome c_1 is indicated by a bracket. The processing site for R. sphaeroides Fe/S protein is not known. Segments having identical amino acid sequences are marked by a box. Alignment inserts are indicated by (–). (D) The prepiece sequences of mitochondrial cytochrome oxidase subunit II. Sequences were taken from Harnisch et al. (1985) (N. crassa Fe/S protein of bc_1 complex), Gabellini and Sebald (1986) (R. sphaeroides Fe/S protein of bc_1 complex and cytochrome c_1), Sadler et al. (1984) (yeast cytochrome c_1), Lederer and Simon (1974) (N. crassa cytochrome c), Daldal et al. (1986) (R. capsulata cytochrome c_2), van den Boogaart et al. (1982a) (N. crassa COX II), Fox and Leaver (1981) (maize COX II), and Coruzzi and Tzagoloff (1979) (yeast COX II).

drial intermediate Fe/S to mature Fe/S. The bacterial Fe/S protein is homologous to the mature *Neurospora* Fe/S protein except in the targeting prepieces (Gabellini and Sebald, 1986). The amino terminus of the bacterial Fe/S protein has characteristics of a leader sequence for export through the cytoplasmic membrane, but the second part of the mitochondrial Fe/S protein prepiece is not comparable as might be predicted from this model (Table VA). Information to redirect the mitochondrial Fe/S protein from the matrix back across the inner membrane might not be contained in sequences analogous to bacterial leader sequences. In this regard, the second part of the cytochrome c_1 prepiece bears a close resemblance to the export leader sequence of the equivalent bacterial protein (Table VB).

The Fe/S protein of the bc_1 complex may have retained this elaborate import pathway because of stringent assembly requirements which necessitate its insertion into the inner membrane from the matrix side. On the other hand, cytochrome c is a soluble protein of the intermembrane space and is less likely to be so demanding. This is reflected in the way in which import pathway for cytochrome c has evolved. In the bacterium *Rhodop*seudomonas capsulata, the equivalent protein (cytochrome c_2) is synthesized as a precursor protein in the bacterial cytosol and is processed as it is secreted into the periplasmic space (comparable to the mitochondrial intermembrane space). Rather than via a redirected import pathway, mitochondrial cytochrome c is transported across just the outer membrane (Fig. 5). On evolutionary gene transfer to the host cell nucleus, the bacterial leader prepiece was removed (Table VC).

Some bacterial-like leader sequences remain in mitochondria. In lower eukaryotes such as *Neurospora*, yeast, and maize, for example, cytochrome oxidase II (a mitochondrial gene product) is synthesized with a prepiece having some characteristics of bacterial leader sequences (e.g., a stretch of hydrophobic amino acids following a charged amino terminus; Table VD). On the other hand, proteins which have no equivalent in bacteria, and therefore presumably did not evolve from the bacterial endosymbiont, may be imported by novel mechanisms which differ from most mitochondrial proteins. For example, the ADP/ATP carrier does not have an amino-terminal prepiece, but specific targeting information is contained within internal sequences that have accompanied the structural part of the protein during evolutionary formation.

Evolutionary remnants of the bacterial endosymbiont may still be present in the import pathways of mitochondrial proteins. The differing pathways could reflect specific assembly requirements of the various proteins and, in some cases, the relative time at which they were introduced as mitochondrial constituents.

C. Summary

Nearly the entire complement of mitochondrial proteins must be imported from the cytosol. To do this correctly, mitochondrial precursor proteins must be specifically targeted to mitochondria and then properly sorted to their functional submitochondrial location. In addition, the proper topological arrangement and assembly with other subunits must occur. Information to enable these processes is embodied within the precursor proteins themselves, and components required to facilitate these events are molecules and structures within the mitochondrion. The import pathways for a variety of mitochondrial proteins have been resolved into a sequence of discrete but contiguous steps. In doing so, the components necessary for each step have frequently been identified at a molecular level. These can be divided into three broad classes, namely, components necessary for (i) specific targeting to mitochondria, (ii) sorting and translocation processes, and (iii) processing events. In the first group, targeting signals, usually contained within the amino-terminal prepiece of the precursor protein, mediate recognition of the remainder of the protein by mitochondria. Receptors on the surface of the mitochondrion bind the precursor protein and initiate its entry into mitochondria In the second group, translocation contact sites facilitate transmembrane movement of most imported proteins. The constituents of these contact regions are unknown but probably contain specific proteins which are necessary for import. The membrane potential supplies the energy or the circumstances to initiate translocation. Features within the precursor proteins and perhaps processes which exist at the site of translocation guide the imported protein to its correct submitochondrial location. Finally, processing occurs in many forms. Prepieces are proteolytically removed by specific proteases, and some proteins are covalently or noncovalently modified. Refolding into an active conformation often occurs, and then assembly into a functional location marks the end of the import process.

The general sequence of events by which import occurs has been wellcharacterized for a number of proteins having different submitochondrial locations and different roles in mitochondrial function. The molecular mechanisms are now of greater interest and are the focus of current research.

ACKNOWLEDGMENTS

We would like to thank M. E. Clement for typing and Dr. M. Schwaiger for critically reviewing the manuscript. We would also like to thank our colleagues for their many contributions to this review.

REFERENCES

- Ades, I. Z., and Butow, R. A. (1980a). The products of mitochondria-bound cytoplasmic polysomes in yeast. J. Biol. Chem. 255, 9918–9924.
- Ades, I. Z., and Butow, R. A. (1980b). The transport of proteins into yeast mitochondria: Kinetics and pools. J. Biol. Chem. 255, 9925–9935.

- Adrian, G. S., McCammon, M. T., Montgomery, D. L., and Douglas, M. G. (1986). Sequences required for delivery and localization of the ADP/ATP translocator to the mitochondrial inner membrane. *Mol. Cell. Biol.* 6, 626–634.
- Allison, D. S., and Schatz, G. (1986). Artificial mitochondrial presequences. Proc. Natl. Acad. Sci. U.S.A. 83, 9011-9015.
- Ambler, R. P., and Wynn, M. (1973). The amino acid sequences of cytochromes c-551 from three species of *Pseudomonas*. Biochem. J. 131, 485–498.
- Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. *Nature (London)* 290, 457–465.
- Arakawa, H., Takiguchi, M., Amaya, Y., Nagata, S., Hayashi, H., and Mori, M. (1987).
 cDNA-derived amino acid sequence of rat mitochondrial 3-oxyacyl-CoA thiolase with no transient presequence: Structural relationship with peroxisomal isozyme. *EMBO J.* 6, 1361-1366.
- Aquila, H., Link, T. A., and Klingenberg, M. (1985). The uncoupling protein from brown fat mitochondria is related to the mitochondrial ADP/ATP carrier. Analysis of sequence homologies and of folding of the protein in the membrane. *EMBO J.* 4, 2369–2376.
- Argan, C., and Shore, G. C. (1985). The precursor to ornithine carbamoyltransferase is transported to mitochondria as a 5S complex containing an import factor. *Biochem. Biophys. Res. Commun.* 131, 289–298.
- Argan, C., Lusty, C. J., and Shore, G. C. (1983). Membrane and cytosolic components affecting transport of the precursor for ornithine carbamoyltransferase into mitochondria. J. Biol. Chem. 258, 6667–6670.
- Argos, P., Hanei, M., and Garavito, R. M. (1978). The Chou-Fasman secondary structure prediction method with an extended data base. *FEBS Lett.* **93**, 19-24.
- Banroques, J., Perea, J., and Jacq, C. (1987). Efficient splicing of two yeast mitochondrial introns controlled by a nuclear-encoded maturase. *EMBO J.* 6, 1085–1091.
- Basile, G., Di Bello, C., and Taniuchi, H. (1980). Formation of an iso-1-cytochrome *c*-like species containing a covalently bonded heme group from the apoprotein by a yeast cell-free system in the presence of hemin. *J. Biol. Chem.* **255**, 7181–7191.
- Beltzer, J. P., Chang, L.-F. L., Hinkkanen, A. E., and Kohlhaw, G. B. (1986). Structure of yeast *LEU1*: The 5' flanking region contains features that predict two modes of control and two productive translation starts. J. Biol. Chem. 261, 5160-5167.
- Böhni, P., Gasser, S., Leaver, C., and Schatz, G. (1980). A matrix-localized mitochondrial protease processing cytoplasmically made precursors to mitochondrial proteins. *In* "The Organization and Expression of the Mitochondrial Genome" (A. M. Kroon, and C. Saccone, eds.), pp. 423–433. Elsevier/North-Holland, Amsterdam.
- Böhni, P. C., Daum, G., and Schatz, G. (1983). Import of proteins into mitochondria: Partial purification of a matrix-located protease involved in cleavage of mitochondrial precursor polypeptides. J. Biol. Chem. 258, 4937–4943.
- Bouillaud, F., Weissenbach, J., and Ricquier, D. (1986). Complete cDNA-derived amino acid sequence of rat brown fat uncoupling protein. J. Biol. Chem. 261, 1487–1490.
- Boutry, M., and Chua, N.-H. (1985). A nuclear gene encoding the β subunit of the mitochondrial ATP synthase in *Nicotiana plumbaginifolia*. *EMBO J.* **4**, 2159–2165.
- Breitenberger, C. A., and RajBhandary, U. L. (1985). Some highlights of mitochondrial research based on analyses of *Neurospora crassa* mitochondrial DNA. *Trends Biochem. Sci.* 10, 478-483.
- Burger, G., Scriven, C., Machleidt, W., and Werner, S. (1982). Subunit 1 of cytochrome oxidase from *Neurospora crassa*: Nucleotide sequence of the coding gene and partial amino acid sequence of the protein. *EMBO J.* 1, 1385–1391.

- Burns, D., and Lewin, A. (1986). Inhibition of the import of mitochondrial proteins by RNase. J. Biol. Chem. 261, 6153-6155.
- Carignani, G., Groudinsky, O., Frezza, D., Schiavon, E., Bergantino, E., and Slonimski, P. P. (1983). An mRNA maturase is encoded by the first intron of the mitochondrial gene for the subunit I of cytochrome oxidase in *S. cerevisiae*. *Cell* **35**, 733-742.
- Cerletti, N., Böhni, P. C., and Suda, K. (1983). Import of proteins into mitochondria: Isolated yeast mitochondria and a solubilized matrix protease correctly process cytochrome c oxidase subunit V at the NH₂ terminus. J. Biol. Chem. **258**, 4944– 4949.
- Chen, W.-J., and Douglas, M. G. (1987). Phosphodiester bond cleavage outside mitochondria is required for the completion of protein import into the mitochondrial matrix. *Cell* **49**, 651–658.
- Chou, P. Y., and Fasman, G. D. (1974). Prediction of protein conformation. *Biochemistry* 13, 222–245.
- Conboy, J. G., Fenton, W. A., and Rosenberg, L. E. (1982). Processing of pre-ornithine transcarbamylase requires a zinc-dependent protease localized to the mitochondrial matrix. *Biochem. Biophys. Res. Commun.* 105, 1–7.
- Coruzzi, G., and Tzagoloff, A. (1979). Assembly of the mitochondrial membrane system: DNA sequence of subunit 2 of yeast cytochrome oxidase. J. Biol. Chem. 254, 9324– 9330.
- Daldal, F., Cheng, S., Applebaum, J., Davidson, E., and Prince, R. C. (1986). Cytochrome c₂ is not essential for photosynthetic growth of *Rhodopseudomonas capsulata*. Proc. Natl. Acad. Sci. U.S.A. 83, 2012–2016.
- Daum, G., Böhni, P. C., and Schatz, G. (1982a). Import of proteins into mitochondria: Cytochrome b_2 and cytochrome c peroxidase are located in the intermembrane space. J. Biol. Chem. 257, 13028-13033.
- Daum, G., Gasser, S. M., and Schatz, G. (1982b). Import of proteins into mitochondria: Energy-dependent, two-step processing of the intermembrane space enzyme cytochrome b_2 by isolated yeast mitochondria. J. Biol. Chem. 257, 13075–13080.
- De Haan, M., van Loon, A. P. G. M., Kreike, J., Vaessen, R. T. M. J., and Grivell, L. A. (1984). The biosynthesis of the ubiquinol-cytochrome c reductase complex in yeast: DNA sequence analysis of the nuclear gene coding for the 14-kDa subunit. *Eur. J. Biochem.* 138, 169-177.
- De Jong, L., Holtrop, M., and Kroon, A. M. (1979). The biogenesis of rat liver mitochondrial ATPase: Subunit composition of the normal ATPase complex and of the deficient complex formed when mitochondrial protein synthesis is blocked. *Biochim. Biophys. Acta* 548, 48–62.
- Dieckmann, C. L., and Tzagoloff, A. (1985). Assembly of the mitochondrial membrane system: CBP6, a yeast nuclear gene necessary for synthesis of cytochrome b. J. Biol. Chem. 260, 1513-1520.
- Dieckmann, C. L., Koerner, T. J., and Tzagoloff, A. (1984). Assembly of the mitochondrial membrane system: CBPI, a yeast nuclear gene involved in 5' processing of cytochrome b pre-mRNA. J. Biol. Chem. 259, 4722-4731.
- Douglas, M. G., Geller, B. L., and Emr, S. D. (1984). Intracellular targeting and import of an F₁-ATPase β-subunit-β-galactosidase hybrid protein into yeast mitochondria. Proc. Natl. Acad. Sci. U.S.A. 81, 3983-3987.
- Dowhan, W., Bibus, C. R., and Schatz, G. (1985). The cytoplasmically made subunit IV is necessary for assembly of cytochrome c oxidase in yeast. *EMBO J.* **4**, 179–184.
- Driever, W., Cook, R. A., and Neupert, W. (1987). In preparation.
- Dumont, M. E., and Richards, F. M. (1984). Insertion of apocytochrome c into lipid vesicles. J. Biol. Chem. 259, 4147–4156.

- Eilers, M., and Schatz, G. (1986). Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. *Nature (London)* **322**, 228–232.
- Eilers, M., Oppliger, W., and Schatz, G. (1987). Both ATP and an energized inner membrane are required to import a purified precursor protein into mitochondria. *EMBO J.* 6, 1073-1077.
- Eisenberg, D., Schwarz, E., Komaromy, M., and Wall, R. (1984). Analysis of membrane surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179, 125-142.
- Emr, S. D., Vassarotti, A., Garrett, J., Geller, B. L., Takeda, M., and Douglas, M. G. (1986). The amino terminus of the yeast F₁-ATPase β-subunit precursor functions as a mitochondrial import signal. J. Cell Biol. 102, 523-533.
- Epand, R. M., Hui, S.-W., Argan, C., Gillespie, L. L., and Shore, G. C. (1986). Structural analysis and amphiphilic properties of a chemically synthesized mitochondrial signal peptide. J. Biol. Chem. 261, 10017–10020.
- Faye, G., and Simon, M. (1983). Analysis of a yeast nuclear gene involved in the maturation of mitochondrial pre-messenger RNA of the cytochrome oxidase subunit 1. Cell 32, 77-87.
- Firgaira, F. A., Hendrick, J. P., Kalousek, F., Kraus, J. P., and Rosenberg, L. E. (1984). RNA required for import of precursor proteins into mitochondria. *Science* 226, 1319– 1322.
- Fisher, W. R., Taniuchi, H., and Anfinsen, C. B. (1973). On the role of heme in the formation of the structure of cytochrome c. J. Biol. Chem. 248, 3188-3195.
- Fox, T. D. (1986). Nuclear gene products required for translation of specific mitochondrially coded mRNAs in yeast. *Trends Genet.* 2, 97–100.
- Fox, T. D., and Leaver, C. J. (1981). The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons. Cell 26, 315–323.
- Freeman, K. B., Chien, S.-M., Lichtfield, D., and Patel, H. V. (1983). Synthesis in vitro of rat brown adipose tissue 32000 M_r protein. FEBS Lett. 158, 325–330.
- Freitag, H., Janes, M., and Neupert, W. (1982). Biosynthesis of mitochondrial porin and insertion into the outer mitochondrial membrane of *Neurospora crassa*. Eur. J. Biochem. 126, 197-202.
- Gabellini, N., and Sebald, W. (1986). Nucleotide sequence and transcription of the *fbc* operon from *Rhodopseudomonas sphaeroides*: Evaluation of the deduced amino acid sequences of the FeS protein, cytochrome b and cytochrome c₁. Eur. J. Biochem. 154, 569–579.
- Gabellini, N., Harnish, U., McCartny, J. E. G, Hauska, G., and Sebald, W. (1985). Cloning and expression of the *fbc* operon encoding the FeS protein, cytochrome *b* and cytochrome c₁ from the *Rhodopseudomonas sphaeroides b/c*₁ complex. *EMBO J.* 4, 549– 553.
- Gasser, S. M., and Schatz, G. (1983). Import of proteins into mitochondria: *In vitro* studies on the biogenesis of the outer membrane. *J. Biol. Chem.* **258**, 3427–3430.
- Gasser, S. M., Daum, G., and Schatz, G. (1982a). Import of proteins into mitochondria: Energy-dependent uptake of precursors by isolated mitochondria. J. Biol. Chem. 257, 13034-13041.
- Gasser, S. M., Ohashi, A., Daum, G., Böhni, P. C., Gibson, J., Reid, G. A., Yonetani, T., and Schatz, G. (1982b). Imported mitochondrial proteins cytochrome b₂ and cytochrome c₁ are processed in two steps. *Proc. Natl. Acad. Sci. U.S.A.* 79, 267–271.
- Gay, N. J., and Walker, J. E. (1985). Two genes encoding the bovine mitochondrial ATP synthase proteolipid specify precursors with different import sequences and are expressed in a tissue-specific manner. EMBO J. 4, 3519–3524.

- Gearing, D. P., and Nagley, P. (1986). Yeast mitochondrial ATPase subunit 8, normally a mitochondrial gene product, expressed *in vitro* and imported back into the organelle. *EMBO J.* 5, 3651-3655.
- Gillespie, L. L. (1987). Identification of an outer mitochondrial membrane protein that interacts with a synthetic signal peptide. J. Biol. Chem. 262, 7939-7942.
- Gillepsie, L. L., Argan, C., Taneja, A. T., Hodges, R. S., Freeman, K. B., and Shore, G. C. (1985). A synthetic signal peptide blocks import of precursor proteins destined for the mitochondrial inner membrane or matrix. J. Biol. Chem. 260, 16045– 16048.
- Gregor, I., and Tsugita, A. (1982). The amino acid sequence of cytochrome c oxidase subunit VI from Saccharomyces cerevisiae. J. Biol. Chem. 257, 13081–13087.
- Guiard, B. (1985). Structure, expression and regulation of a nuclear gene encoding a mitochondrial protein: The yeast L(+)-lactate cytochrome c oxidoreductase (cytochrome b_2). EMBO J. 4, 3265-3272.
- Guiso, N., Dreyfus, M., Siffert, O., Danchin, A., Spyridakis, A., Gargouri, A., Claisse, M., and Slonimski, P. P. (1984). Antibodies against synthetic oligopeptides allow identification of the mRNA-maturase encoded by the second intron of the yeast *cob-box* gene. *EMBO J.* 8, 1769–1772.
- Hackenbrock, C. R. (1968). Chemical and physical fixation of isolated mitochondria in lowenergy and high-energy states. *Proc. Natl. Acad. Sci. U.S.A.* **61**, 589-602.
- Hallermayer, G., Zimmermann, R., and Neupert, W. (1977). Kinetic studies of the transport of cytoplasmically synthesized proteins into the mitochondria in intact cells of *Neurospora crassa. Eur. J. Biochem.* 81, 523–532.
- Hampsey, D. M., Lewin, A. S., and Kohlhaw, G. B. (1983). Submitochondrial localization, cell-free synthesis, and mitochondrial import of 2-isopropylmalate synthase of yeast. *Proc. Natl. Acad. Sci. U.S.A.* 80, 1270–1274.
- Harmey, M. A., and Neupert, W. (1985). Synthesis and intracellular transport of mitochondrial proteins. *In* "The Enzymes of Biological Membranes" (A. Martonosi, ed.), Vol. 4, pp. 431–464. Plenum, New York.
- Harmey, M. A., Hallermayer, G., Korb, H., and Neupert, W. (1977). Transport of cytoplasmically synthesized proteins into the mitochondria in a cell free system from *Neurospora crassa. Eur. J. Biochem.* 81, 533-544.
- Harnisch, U., Weiss, H., and Sebald, W. (1985). The primary structure of the iron-sulfur subunit of ubiquinol-cytochrome c reductase from *Neurospora*, determined by cDNA and gene sequencing. *Eur. J. Biochem.* 149, 95–99.
- Hartl, F.-U., Schmidt, B., Weiss, H., Wachter, E., and Neupert, W. (1986). Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinol cytochrome c reductase. Cell 47, 939–951.
- Hartl, F.-U., Ostermann, J., Guiard, B., and Neupert, W. (1987). Successive translocation into and out of the mitochondrial matrix: targeting of proteins to the intermembrane space by a bipartite signal peptide. *Cell* (in press).
- Hase, T., Riezman, H., Suda, K., and Schatz, G. (1983). Import of proteins into mitochondria: Nucleotide sequence of the gene for a 70-kd protein of the yeast mitochondrial outer membrane. *EMBO J.* 2, 2169–2172.
- Hase, T., Müller, U., Riezman, H., and Schatz, G. (1984). A 70-kd protein of the yeast mitochondrial outer membrane is targeted and anchored via its extreme amino terminus. *EMBO J.* 3, 3157–3164.
- Hase, T., Nakai, M., and Matsubara, H. (1986). The N-terminal 21 amino acids of a 70 kDa protein of the yeast mitochondrial outer membrane direct *E. coli* β -galactosidase into the mitochondrial matrix space in yeast cells. *FEBS Lett.* **197**, 199–203.
- Hatalová, I., and Kolarov, J. (1983). Synthesis and intracellular transport of cytochrome

oxidase subunit IV and ADP/ATP translocator protein in intact hepatoma cells. Biochem. Biophys. Res. Commun. 110, 132-139.

- Hay, R., Böhni, P., and Gasser, S. (1984). How mitochondria import proteins. *Biochim. Biophys. Acta* 779, 65-87.
- Hawlitschek, G., Hartl, F.-U., Schmidt, B., and Neupert, W. (1988). The processing peptidase of mitochondria: Two different polypeptides cooperate to cleave imported precursor proteins. *Cell* (submitted).
- Hennig, B., and Neupert, W. (1981). Assembly of cytochrome c. Apocytochrome c is bound to specific sites on mitochondria before its conversion to holocytochrome c. Eur. J. Biochem. 81, 533-544.
- Hennig, B., Köhler, H., and Neupert, W. (1983). Receptor sites involved in posttranslational transport of apocytochrome c into mitochondria: Specificity, affinity and number of sites. Proc. Natl. Acad. Sci. U.S.A. 80, 4963–4967.
- Hensgens, L. A. M., Grivell, L. A., Borst, P., and Bos, J. L. (1979). Nucleotide sequence of the mitochondrial structural gene for subunit 9 of yeast ATPase complex. *Proc. Natl. Acad. Sci. U.S.A.* 76, 1663–1667.
- Horwich, A. L., Fenton, W. A., Williams, K. R., Kalousek, F., Kraus, J. P., Doolittle, R. F., Konigsberg, W., and Rosenberg, L. E. (1984). Structure and expression of a complementary DNA for the nuclear coded precursor of human mitochondrial ornithine transcarbamylase. *Science* 224, 1068–1074.
- Horwich, A. L., Kalousek, F., and Rosenberg, L. E. (1985a). Arginine in the leader peptide is required for both import and proteolytic cleavage of a mitochondrial precursor. *Proc. Natl. Acad. Sci. U.S.A.* 82, 4930–4933.
- Horwich, A. L., Kalousek, F., Mellman, I., and Rosenberg, L. E. (1985b). A leader peptide is sufficient to direct mitochondrial import of a chimeric protein. *EMBO J.* 4, 1129– 1135.
- Horwich, A. L., Kalousek, F., Fenton, W. A., Pollock, R. A., and Rosenberg, L. E. (1986). Targeting of pre-ornithine transcarbamylase to mitochondria: Definition of critical regions and residues in the leader peptide. *Cell* 44, 451-459.
- Hurt, E. C., and Schatz, G. (1987). A cytosolic protein contains a cryptic mitochondrial targeting signal. *Nature (London)* **325**, 499-503.
- Hurt, E. C., and van Loon, A. P. G. M. (1986). How proteins find mitochondria and intramitochondrial compartments. *Trends Biochem. Sci.* 11, 204–207.
- Hurt, E. C., Pesold-Hurt, B., and Schatz, G. (1984a). The amino-terminal region of an imported mitochondrial precursor polypeptide can direct cytoplasmic dihydrofolate reductase into the mitochondrial matrix. *EMBO J.* 3, 3149–3156.
- Hurt, E. C., Pesold-Hurt, B., and Schatz, G. (1984b). The cleavable prepiece of an imported mitochondrial protein is sufficient to direct cytosolic dihydrofolate reductase into the mitochondrial matrix. FEBS Lett. 178, 306-310.
- Hurt, E. C., Pesold-Hurt, B., Suda, K., Oppliger, W., and Schatz, G. (1985a). The first twelve amino acids (less than half of the pre-sequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolate reductase into the yeast mitochondrial matrix. *EMBO J.* 4, 2061–2068.
- Hurt, E. C., Müller, U., and Schatz, G. (1985b). The first twelve amino acids of a yeast mitochondrial outer membrane protein can direct a nuclear-encoded cytochrome oxidase subunit to the mitochondrial inner membrane. *EMBO J.* 4, 3509-3518.
- Hurt, E. C., Soltanifar, N., Goldschmidt-Clermont, M., Rochaix, J.-D., and Schatz, G. (1986a). The cleavable pre-sequence of an imported chloroplast protein directs attached polypeptides into yeast mitochondria. *EMBO J.* 5, 1343-1350.
- Hurt, E. C., Goldschmidt-Clermont, M., Peshold-Hurt, B., Rochaix, J.-D., and Schatz, G.

17. Synthesis and Assembly of Mitochondrial Proteins

(1986b). A mitochondrial presequence can transport a chloroplast-encoded protein into yeast mitochondria. J. Biol. Chem. 261, 11440-11443.

- Hurt, E. C., Allison, D. S., Müller, U., and Schatz, G. (1987). Amino-terminal deletions in the presequence of an imported mitochondrial protein block the targeting function and proteolytic cleavage of the presequence at the carboxy terminus. J. Biol. Chem. 262, 1420-1424.
- Ito, A., Ogishima, T., Ou, W., Omura, T., Aoyagi, H., Lee, S., Mihara, H., and Izumiya, N. (1985). Effects of synthetic model peptides resembling the extension peptides of mitochondrial enzyme precursors on import of the precursors into mitochondria. J. Biochem. 98, 1571-1582.
- Jackl, G., and Sebald, W. (1975). Identification of two products of mitochondrial protein synthesis associated with mitochondrial adenosine triphosphatase from *Neurospora* crassa. Eur. J. Biochem. 54, 97-106.
- Jacq, C., Banroques, J., Becam, A. M., Slonimski, P. P., Guiso, N., and Danchin, A. (1984). Antibodies against a fused 'lacZ-yeast mitochondrial intron' gene product allow identification of the mRNA maturase encoded by the fourth intron of the yeast cob-box gene. EMBO J. 3, 1567-1572.
- Jaussi, R., Sonderegger, P., Flückiger, J., and Christen, P. (1982). Biosynthesis and topogenesis of aspartate aminotransferase isoenzymes in chicken embryo fibroblasts: The precursor of the mitochondrial isoenzyme is either imported into mitochondria or degraded in the cytosol. J. Biol. Chem. 257, 13334–13340.
- Jaussi, R., Cotton, B., Juretic, N., Christen, P., and Schümperli, D. (1985). The primary structure of the precursor of chicken mitochondrial aspartate aminotransferase. J. Biol. Chem. 260, 16060-16063.
- Joh, T., Nomiyama, H., Maeda, S., Shimada, K., and Morino, Y. (1985). Cloning and sequence analysis of a cDNA encoding porcine mitochondrial aspartate aminotransferase precursor. *Proc. Natl. Acad. Sci. U.S.A.* 82, 6065–6069.
- Kaput, J., Goltz, S., and Blobel, G. (1982). Nucleotide sequence of the yeast nuclear gene for cytochrome c peroxidase precursor: Functional implications of the pre-sequence for protein transport into mitochondria. J. Biol. Chem. 257, 15054–15058.
- Kellems, R. E., and Butow, R. A. (1972). Cytoplasmic-type 80 S ribosomes associated with yeast mitochondria: I. Evidence for ribosome binding sites on yeast mitochondria. J. Biol. Chem. 247, 8043-8050.
- Kellems, R. E., Allison, V. F., and Butow, R. A. (1974). Cytoplasmic-type 80 S ribosomes associated with yeast mitochondria: II. Evidence for the association of cytoplasmic ribosomes with the outer mitochondrial membrane *in situ*. J. Biol. Chem. 249, 3297– 3303.
- Keng, T., Alani, E., and Guarente, L. (1986). The nine amino-terminal residues of δ -aminolevulinate synthase direct β -galactosidase into the mitochondrial matrix. *Mol. Cell. Biol.* **6**, 355-364.
- Kobayashi, K., Iwasaki, Y., Sasaki, T., Nakamura, K., and Asahi, T. (1986). Putative amino-terminal presequence for β -subunit of plant mitochondrial F₁ ATPase deduced from the amino-terminal sequence of the mature subunit. *FEBS Lett.* **203**, 144–148.
- Koerner, T. J., Hill, J., and Tzagoloff, A. (1985). Cloning and characterization of the yeast nuclear gene for subunit 5 of cytochrome oxidase. J. Biol. Chem. 260, 9513–9515.
- Köhler, H., Stuart, R. A., and Neupert, W. (1987). In preparation.
- Kolansky, D. M., Conboy, J. G., Fenton, W. A., and Rosenberg, L. E. (1982). Energydependent translocation of the precursor of ornithine transcarbamylase by isolated rat liver mitochondria. J. Biol. Chem. 257, 8467–8471.
- Kolarov, J., and Nelson, B. D. (1984). Import and processing of cytochrome $b-c_1$ complex

subunits in isolated hepatoma ascites cells: Inhibition by rhodamine 6G. Eur. J. Biochem. 144, 387-392.

- Korb, H., and Neupert, W. (1978). Biogenesis of cytochrome c in *Neurospora crassa:* Synthesis of apocytochrome c, transfer to mitochondria and conversion to holocytochrome c. *Eur. J. Biochem.* **91**, 609–620.
- Kraus, J. P., Conboy, J. G., and Rosenberg, L. E. (1981). Pre-ornithine transcarbamylase: Properties of the cytoplasmic precursor of a mitochondrial matrix enzyme. J. Biol. Chem. 256, 10739–10742.
- Kraus, J. P., Hodges, P. E., Williamson, C. L., Horwich, A. L., Kalousek, F., Williams, K. R., and Rosenberg, L. E. (1985). A cDNA clone for the precursor of rat mitochondrial ornithine transcarbamylase: Comparison of rat and human leader sequences and conservation of catalytic sites. *Nucleic Acids Res.* 13, 943–952.
- Kruse, B., and Sebald, W. (1984). Nucleotide sequences of the nuclear genes for the proteolipid and δ subunit of the mitochondrial ATP synthase from *Neurospora crassa*. In "H⁺-ATPase (ATP Synthase): Structure, Function, Biogenesis of the F₀ F₁ Complex of Coupling Membranes" (S. Papa, K. Altendorf, L. Ernster, and L. Packer, eds.), pp. 67–75. ICSU Press/Adriatica. Editrice, Bari, Italy.
- Kuzela, S., Joste, V., and Nelson, B. D. (1986). Rhodamine 6G inhibits the matrix-catalyzed processing of precursors of rat-liver mitochondrial proteins. *Eur. J. Biochem.* 154, 553-557.
- Lederer, F., and Simon, A. M. (1974). *Neurospora crassa* and *Humicola lanuginosa* cytochromes c: More homology in the heme region. *Biochem. Biophys. Res. Commun.* 56, 317-323.
- Lewin, A. S., Gregor, I., Mason, T. L., Nelson, N., and Schatz, G. (1980). Cytoplasmically made subunits of yeast mitochondrial F₁-ATPase and cytochrome c oxidase are synthesized as individual precursors, not as polyproteins. *Proc. Natl. Acad. Sci. U.S.A.* 77, 3998-4002.
- Lomax, M. I., Bachman, N. J., Nasoff, M. S., Caruthers, M. H., and Grossman, L. I. (1984). Isolation and characterization of a cDNA clone for bovine cytochrome c oxidase subunit IV. Proc. Natl. Acad. Sci. U.S.A. 81, 6295-6299.
- Luzikov, V. N. (1986). Proteolytic control over topogenesis of membrane proteins. *FEBS Lett.* 200, 259-264.
- Maarse, A. C., and Grivell, L. A. (1987). Nucleotide sequence of the gene encoding the 11kDa subunit of the ubiquinol-cytochrome-c oxidoreductase in Saccharomyces cerevisiae. Eur. J. Biochem. 165, 419-425.
- Maarse, A. C., van Loon, A. P. G. M., Riezman, H., Gregor, J., Schatz, G., and Grivell, L. A. (1984). Subunit IV of yeast cytochrome c oxidase: Cloning and nucleotide sequencing of the gene and partial amino acid sequencing of the mature protein. *EMBO J.* 3, 2831–2837.
- McAda, P. C., and Douglas, M. G. (1982). A neutral metallo endoprotease involved in the processing of an F₁-ATPase subunit precursor in mitochondria. J. Biol. Chem. 257, 3177-3182.
- Maccecchini, M.-L., Rudin, Y., Blobel, G., and Schatz, G. (1979a). Import of proteins into mitochondria: Precursor forms of the extramitochondrially made F₁ ATPase subunits in yeast. *Proc. Natl. Acad. Sci. U.S.A.* 76, 343–347.
- Maccecchini, M.-L., Rudin, Y., and Schatz, G. (1979b). Transport of proteins across the mitochondrial outer membrane: A precursor form of the cytoplasmically made intermembrane enzyme cytochrome c peroxidase. J. Biol. Chem. 254, 7468–7471.
- McGraw, P., and Tzagoloff, A. (1983). Assembly of the mitochondrial membrane system: Characterization of a yeast nuclear gene involved in the processing of the cytochrome b pre-mRNA. J. Biol. Chem. 258, 9459–9468.

17. Synthesis and Assembly of Mitochondrial Proteins

- Machleidt, W., and Werner, S. (1979). Is the mitochondrially made subunit 2 of cytochrome oxidase synthesized as a precursor in *Neurospora crassa? FEBS Lett.* 107, 327–330.
- Macino, G., and Tzagoloff, A. (1979). Assembly of the mitochondrial membrane system: The DNA sequence of a mitochondrial ATPase gene in *Saccharomyces cerevisiae*. J. Biol. Chem. 254, 4617-4623.
- McIntyre, P., Graf, L., Mercer, J., Peterson, G., Hudson, P., and Hoogenraad, N. (1984). A highly basic N-terminal extension of the mitochondrial matrix enzyme ornithine transcarbamylase from rat liver. *FEBS Lett.* **177**, 41–46.
- Marres, C. A. M., van Loon, A. P. G. M., Oudshoorn, P., van Steeg, H., Grivell, L. A., and Slater, E. C. (1985). Nucleotide sequence analysis of the nuclear gene coding for manganese superoxide dismutase of yeast mitochondria, a gene previously assumed to code for the Rieske iron-sulphur protein. *Eur. J. Biochem.* 147, 153-161.
- Marzuki, S., and Hibbs, A. R. (1986). Are all mitochondrial translation products synthesized on membrane-bound ribosomes? *Biochim. Biophys. Acta* 866, 120–124.
- Marzuki, S., and Linnane, A. W. (1985). Biosynthesis of the yeast mitochondrial H⁻-ATPase complex. In "The Enzymes of Biological Membranes" (A. N. Martonosi, ed.), Vol. 4, pp. 415–430. Plenum, New York.
- Matsuura, S., Arpin, M., Hannum, C., Margoliash, E., Sabatini, D. D., and Morimoto, T. (1981). In vitro synthesis and posttranslational uptake of cytochrome c into isolated mitochondria: Role of a specific addressing signal in the apocytochrome. Proc. Natl. Acad. Sci. U.S.A. 78, 4368–4372.
- Mihara, K., and Blobel, G. (1980). The four cytoplasmically made subunits of yeast mitochondrial cytochrome c oxidase are synthesized individually and not as a polyprotein. *Proc. Natl. Acad. Sci. U.S.A.* 77, 4160–4164.
- Mihara, K., Blobel, G., and Sato, R. (1982a). In vitro synthesis and integration into mitochondria of porin, a major protein of the outer mitochondrial membrane of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 79, 7102–7106.
- Mihara, K., Omura, T., Harano, T., Brenner, S., Fleischer, S., and Rajagopalan, K. V. (1982b). Rat liver L-glutamate dehydrogenase, malate dehydrogenase, $D-\beta$ -hydroxybutyrate dehydrogenase, and sulfite oxidase are each synthesized as larger precursors by cytoplasmic free polysomes. J. Biol. Chem. 257, 3355–3358.
- Mitchell, P., and Moyle, J. (1969). Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. *Eur. J. Biochem.* 7, 471–484.
- Miura, S., Mori, M., Amaya, Y., and Tatibana, M. (1982). A mitochondrial protease that cleaves the precursor of ornithine carbamoyltransferase: Purification and properties. *Eur. J. Biochem.* 122, 641–647.
- Miura, S., Mori, M., and Tatibana, M. (1983). Transport of ornithine carbamoyltransferase precursor into mitochondria: Stimulation by potassium ion, magnesium ion, and a reticulocyte cytosolic protein(s). J. Biol. Chem. 258, 6671-6674.
- Miura, S., Amaya, Y., and Mori, M. (1986). A metalloprotease involved in the processing of mitochondrial precursor proteins. *Biochem. Biophys. Res. Commun.* 134, 1151– 1159.
- Mori, M., Miura, S., Tatibana, M., and Cohen, P. P. (1980). Characterization of a protease apparently involved in processing of pre-ornithine transcarbamylase of rat liver. *Proc. Natl. Acad. Sci. U.S.A.* 77, 7044–7048.
- Mori, M., Morita, T., Ikeda, F., Amaya, Y., Tatibana, M., and Cohen, P. P. (1981). Synthesis, intracellular transport, and processing of the precursors for mitochondrial ornithine transcarbamylase and carbamoylphosphate synthetase I in isolated hepatocytes. *Proc. Natl. Acad. Sci. U.S.A.* 78, 6056–6060.
- Morita, T., Mori, M., Ikeda, F., and Tatibana, M. (1982). Transport of carbamoyl phosphate synthetase I and ornithine transcarbamylase into mitochondria: Inhibition by rho-

damine 123 and accumulation of enzyme precursors in isolated hepatocytes. J. Biol. Chem. 257, 10547-10550.

- Morohashi, K., Fujii-Kuriyama, Y., Okada, Y., Sogawa, K., Hirose, T., Inayama, S., and Omura, T. (1984). Molecular cloning and nucleotide sequence of cDNA for mRNA of mitochondrial cytochrome P-450 (SCC) of bovine adrenal cortex. Proc. Natl. Acad. Sci. U.S.A. 81, 4647–4651.
- Mueckler, M. M., and Pitot, H. C. (1985). Sequence of the precursor to rat ornithine aminotransferase deduced from a cDNA clone. J. Biol. Chem. 260, 12993-12997.
- Müller, P. P., Reif, M. K., Zonghou, S., Sengstag, C., Mason, T. L., and Fox, T. D. (1984). A nuclear mutation that posttranscriptionally blocks accumulation of a yeast mitochondrial gene product can be suppressed by a mitochondrial gene rearrangement. J. Mol. Biol. 175, 431-452.
- Myers, A. M., and Tzagoloff, A. (1985). *MSW*, a yeast gene coding for mitochondrial tryptophanyl-tRNA synthetase. J. Biol. Chem. 260, 15371-15377.
- Nagata, S., Tseunetsugu-Yokata, Y., Naito, A., and Kaziro, Y. (1983). Molecular cloning and sequence determination of the nuclear gene coding for mitochondrial elongation factor Tu of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 80, 6192-6196.
- Nakagawa, T., Maeshima, M., Muto, H., Kajiura, H., Hattori, H., and Asahi, T. (1987). Separation, amino-terminal sequence and cell-free synthesis of the smallest subunit of sweet potato cytochrome c oxidase. Eur. J. Biochem. 165, 303–307.
- Nargang, F. E., Bertrand, H., and Werner, S. (1978). A nuclear mutant of *Neurospora* crassa lacking subunit 1 of cytochrome c oxidase. J. Biol. Chem. 253, 6364-6369.
- Natsoulis, G., Hilger, F., and Fink, G. R. (1986). The HSTI gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46, 235–243.
- Nelson, N., and Schatz, G. (1979). Energy-dependent processing of cytoplasmically made precursors to mitochondrial proteins. Proc. Natl. Acad. Sci. U.S.A. 76, 4365–4369.
- Neupert, W., and Schatz, G. (1981). How proteins are transported into mitochondria. *Trends Biochem. Sci.* 6, 1–4.
- Nguyen, M., Argan, C., Lusty, C. J., and Shore, G. C. (1986). Import and processing of hybrid proteins by mammalian mitochondria *in vitro*. J. Biol. Chem. 261, 800-805.
- Nicholson, D. W., Köhler, H., and Neupert, W. (1987). Import of cytochrome c into mitochondria: Cytochrome c heme lyase. Eur. J. Biochem. 164, 147–157.
- Nishikimi, M., Shimomura, Y., and Ozawa, T. (1986). Cell-free synthesis of ubiquinonebinding protein of mitochondrial cytochrome bc₁ complex. Biochem. Biophys. Res. Commun. 138, 1291–1297.
- Nyunoya, H., Broglie, K. E., Widgren, E. E., and Lusty, C. J. (1985). Characterization and derivation of the gene coding for mitochondrial carbamoyl phosphate synthase 1 of rat. *J. Biol. Chem.* 260, 9346–9356.
- Ohashi, A., Gibson, J., Gregor, I., and Schatz, G. (1982). Import of proteins into mitochondria: The precursor of cytochrome c₁ is processed in two steps, one of them hemedependent. J. Biol. Chem. 257, 13042–13047.
- Ohba, M., and Schatz, G. (1987a). Protein import into yeast mitochondria is inhibited by antibodies raised against 45-kd proteins of the outer membrane. *EMBO J.* 6, 2109–2115.
- Ohba, M., and Schatz, G. (1987b). Disruption of the outer membrane restores protein import to trypsin-treated yeast mitochondria. *EMBO J.* 6, 2117–2122.
- Ohta, S., and Kagawa, Y. (1986). Human F₁-ATPase: Molecular cloning of cDNA for the β subunit. J. Biochem. 99, 135–141.
- Ohta, S., and Schatz, G. (1984). A purified precursor polypeptide requires a cytosolic protein fraction for import into mitochondria. *EMBO J.* **3**, 651–657.
- Okamura, T., John, M. E., Zuber, M. X., Simpson, E. R., and Waterman, M. R. (1985).

17. Synthesis and Assembly of Mitochondrial Proteins

Molecular cloning and amino acid sequence of the precursor form of bovine adrenodoxin: Evidence for a previously unidentified COOH-terminal peptide. *Proc. Natl. Acad. Sci. U.S.A.* **82**, 5705–5709.

- Ono, H., Yoshimura, N., Sato, M., and Tuboi, S. (1985). Translocation of proteins into rat liver mitochondria: Existence of two different precursor polypeptides of liver fumarase and import of the precursor into mitochondria. J. Biol. Chem. 260, 3402-3407.
- Palmer, J. D., and Shields, C. R. (1984). Tripartite structure of the Brassica campestris mitochondrial genome. Nature (London) 307, 437-440.
- Pape, L. K., Koerner, T. J., and Tzagoloff, A. (1985). Characterization of a yeast nuclear gene (MST1) coding for the mitochondrial threonyl-tRNA₁ synthetase. J. Biol. Chem. 260, 15362-15370.
- Patterson, T., and Poyton, R. O. (1986). COX8, the structural gene for yeast cytochrome c oxidase subunit VIII. J. Biol. Chem. 261, 17192-17197.
- Pfaller, R., and Neupert, W. (1987). High-affinity binding sites involved in the import of porin into mitochondria. *EMBO J.* 6, 2635–2642.
- Pfaller, R., Freitag, H., Harmey, M. A., Benz, R., and Neupert, W. (1985). A water-soluble form of porin from the mitochondrial outer membrane of *Neurospora crassa*. J. Biol. Chem. 260, 8188-8193.
- Pfanner, N., and Neupert, W. (1985). Transport of proteins into mitochondria: A potassium diffusion potential is able to drive the import of ADP/ATP carrier. *EMBO J.* **4**, 2819–2825.
- Pfanner, N., and Neupert, W. (1986). Transport of F_1 -ATPase subunit β into mitochondria depends on both a membrane potential and nucleoside triphosphates. *FEBS Lett.* **209**, 152–156.
- Pfanner, N., and Neupert, W. (1987). Distinct steps in the import of ADP/ATP carrier into mitochondria. J. Biol. Chem. 262, 7528-7536.
- Pfanner, N., Tropschug, M., and Neupert, W. (1987). Mitochondrial protein import: Nucleoside triphosphates are involved in conferring import-competence to precursors. *Cell* 49, 815–823.
- Pillar, T., Lang, B. F., Steinberger, I., Vogt, B., and Kaudewitz, F. (1983). Expression of the "split gene" *cob* in yeast mtDNA: Nuclear mutations specifically block the excision of different introns from its primary transcript. J. Biol. Chem. 258, 7954–7959.
- Power, S. D., Lochrie, M. A., and Poyton, R. O. (1986). The nuclear-coded subunits of yeast cytochrome c oxidase: The amino acid sequences of subunits VII and VIIa, structural similarities between the three smallest polypeptides of the holoenzyme, and implications for biogenesis. J. Biol. Chem. 261, 9206–9209.
- Pratje, E., and Guiard, B. (1986). One nuclear gene controls the removal of transient presequences from two yeast proteins: One encoded by the nuclear the other by the mitochondrial genome. *EMBO J.* 5, 1313–1317.
- Pratje, E., Mannhaupt, G., Michaelis, G., and Beyreuther, K. (1983). A nuclear mutation prevents processing of a mitochondrially encoded membrane protein in *Saccharomyces cerevisiae*. *EMBO J.* 2, 1049–1054.
- Raymond, Y., and Shore, G. C. (1981). Processing of the precursor for the mitochondrial enzyme, carbamoyl phosphate synthetase. J. Biol. Chem. 256, 2087-2090.
- Reid, G. A., and Schatz, G. (1982a). Import of proteins into mitochondria: Yeast cells grown in the presence of carbonyl cyanide *m*-chlorophenylhydrazone accumulate massive amounts of some mitochondrial precursor polypeptides. J. Biol Chem. 257, 13056– 13061.
- Reid, G. A., and Schatz, G. (1982b). Import of proteins into mitochondria: Extramitochondrial pools and posttranslational import of mitochondrial protein precursors in vivo. J. Biol. Chem. 257, 13062–13067.

- Reid, G. A., Yonetani, T., and Schatz, G. (1982). Import of proteins into mitochondria: Import and maturation of the mitochondrial intermembrane space enzymes cytochrome b_2 and cytochrome c peroxidase in intact yeast cells. J. Biol. Chem. 257, 13068-13074.
- Ricquier, D., Thibault, J., Bouillaud, F., and Kuster, Y. (1983). Molecular approach to thermogenesis in brown adipose tissue. J. Biol. Chem. 258, 6675-6677.
- Ridley, R. G., Patel, H. V., Gerber, G. E., Morton, R. C., and Freeman, K. B. (1986). Complete nucleotide and derived amino acid sequence of cDNA encoding the mitochondrial uncoupling protein of rat brown adipose tissue: Lack of a mitochondrial targeting presequence. *Nucleic Acids Res.* 14, 4025–4035.
- Rietveld, A., and de Kruijff, B. (1984). Is the mitochondrial precursor protein apocytochrome c able to pass a lipid barrier? J. Biol. Chem. 259, 6704-6707.
- Rietveld, A., Sijens, P., Verkleij, A. J., and de Kruijff, B. (1983). Interaction of cytochrome c and its precursor apocytochrome c with various phospholipids. *EMBO J.* **2**, 907–913.
- Rietveld, A., Ponjee, G. A. E., Schiffers, P., Jordi, W., Van De Coolwijk, P. J. F. M., Demel, R. A., Marsh, D., and de Kruijff, B. (1985). Investigations on the insertion of the mitochondrial precursor protein apocytochrome c into model membranes. *Biochim. Biophys. Acta* 818, 398–409.
- Rietveld, A., Jordi, W., and de Kruijff, B. (1986a). Studies on the lipid dependency and mechanism of the translocation of the mitochondrial precursor protein apocytochrome c across model membranes. J. Biol. Chem. 261, 3846-3856.
- Rietveld, A., Berkhout, T. A., Roenhorst, A., Marsh, D., and de Kruijff, B. (1986b). Preferential association of apocytochrome c with negatively charged phospholipids in mixed model membranes. *Biochem. Biophys. Acta* 858, 38-46.
- Riezman, H., Hay, R., Gasser, S., Daum, G., Schneider, G., Witte, C., and Schatz, G. (1983a). The outer membrane of yeast mitochondria: Isolation of outside-out sealed vesicles. *EMBO J.* 2, 1105–1111.
- Riezman, H., Hay, R., Witte, C., Nelson, N., and Schatz, G. (1983b). Yeast mitochondrial outer membrane specifically binds cytoplasmically synthesized precursors of mitochondrial proteins. *EMBO J.* 2, 1113-1118.
- Riezman, H., Hase, T., van Loon, A. P. G. M., Grivell, L. A., Suda, K., and Schatz, G. (1983c). Import of proteins into mitochondria: A 70 kilodalton outer membrane protein with a large carboxy-terminal deletion is still transported to the outer membrane. *EMBO J.* 2, 2161–2168.
- Rödel, G., Körte, A., and Kaudewitz, F. (1985). Mitochondrial suppression of a yeast nuclear mutation which affects the translation of the mitochondrial apocytochrome b transcript. Curr. Genet. 9, 641–648.
- Roise, D., Horvath, S. J., Tomich, J. M., Richards, J. H., and Schatz, G. (1986). A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artifical phospholipid bilayers. *EMBO J.* 5, 1327–1334.
- Runswick, M. J., Powell, S. J., Nyren, P., and Walker, J. E. (1987). Sequence of the bovine mitochondrial phosphate carrier protein: Structural relationship to ADP/ATP translocase and the brown fat mitochondria uncoupling protein. *EMBO J.* 6, 1367–1373.
- Sachs, M. S., David, M., Werner, S., and RajBhandary, U. L. (1986). Nuclear genes for cytochrome c oxidase subunits of *Neurospora crassa*. J. Biol. Chem. 261, 869–873.
- Sadler, I., Suda, K., Schatz, G., Kaudewitz, F., and Haid, A. (1984). Sequencing of the nuclear gene for the yeast cytochrome c_1 precursor reveals an unusually complex amino-terminal presequence. *EMBO J.* **3**, 2137–2143.
- Saltzgaber-Müller, J., and Schatz, G. (1978). Heme is necessary for the accumulation and

17. Synthesis and Assembly of Mitochondrial Proteins

assembly of cytochrome c oxidase subunits in *Saccharomyces cerevisiae*. J. Biol. Chem. **253**, 305–310.

- Saraste, M., and Walker, J. E. (1982). Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. *FEBS Lett.* **144**, 250–254.
- Schatz, G. (1968). Impaired binding of mitochondrial adenosine triphosphatase in the cytoplasmic "petite" mutant of Saccharomyces cerevisiae. J. Biol. Chem. 243, 2192–2199.
- Schatz, G. (1979). How mitochondria import proteins from the cytoplasm. *FEBS Lett.* 103, 203-211.
- Schiffer, M., and Edmundson, A. B. (1967). Use of helical wheels to represent the structures of proteins and to identify segments with helical properties. *Biophys. J.* 7, 121–135.
- Schleyer, M., and Neupert, W. (1984). Transport of ADP/ATP carrier into mitochondria: Precursor imported *in vitro* acquires functional properties of the mature protein. J. *Biol. Chem.* 259, 3487–3491.
- Schleyer, M., and Neupert, W. (1985). Transport of proteins into mitochondria: Translocational intermediates spanning contact sites between outer and inner membranes. *Cell* 43, 339-350.
- Schleyer, M., Schmidt, B., and Neupert, W. (1982). Requirement of a membrane potential for the posttranslational transfer of proteins into mitochondria. *Eur. J. Biochem.* 125, 109–116.
- Schmidt, G. W., DeVillers-Thiery, A., Desruisseaux, H., Blobel, G., and Chua, N.-H. (1979). NH₂-Terminal amino acid sequences of precursor and mature forms of the ribulose-1,5-bisphosphate carboxylase small subunit from *Chlamydomonas reinhardtii. J. Cell Biol.* 83, 615–622.
- Schmidt, B., Hennig, B., Köhler, H., and Neupert, W. (1983a). Transport of the precursor to *Neurospora* ATPase subunit 9 into yeast mitochondria: Implications on the diversity of the transport mechanism. J. Biol. Chem. 258, 4687–4689.
- Schmidt, B., Hennig, B., Zimmermann, R., and Neupert, W. (1983b). Biosynthetic pathway of mitochondrial ATPase subunit 9 in *Neurospora crassa*. J. Cell Biol. 96, 248–255.
- Schmidt, B., Wachter, E., Sebald, W., and Neupert, W. (1984). Processing peptidase of *Neurospora* mitochondria: Two-step cleavage of imported ATPase subunit 9. Eur. J. Biochem. 144, 581-588.
- Schmidt, B., Pfaller, R., Pfanner, N., Schleyer, M., and Neupert, W. (1985). Transport of proteins into mitochondria: Receptors, recognition and transmembrane movement of precursors. *In* "Achievements and Perspectives in Mitochondrial Research" (E. Quagliarello, E. C. Slater, F. Palmieri, C. Saccone, and A. M. Kroon eds.), pp. 389–396. Elsevier, Amsterdam.
- Schwaiger, M., Herzog, V., and Neupert, W. (1987). Characterization of translocation sites involved in the import of mitochondrial proteins. J. Cell Biol. 105, 235–246.
- Sevarino, K. A., and Poyton, R. O. (1980). Mitochondrial membrane biogenesis: Identification of a precursor to yeast cytochrome c oxidase subunit II, an integral polypeptide. *Proc. Natl. Acad. Sci. U.S.A.* 77, 142-146.
- Shore, G. C., Power, F., Bendayan, M., and Carignan, P. (1981). Biogenesis of a 35kilodalton protein associated with outer mitochondrial membrane in rat liver. J. Biol. Chem. 256, 8761–8766.
- Sidhu, A., and Beattie, D. S. (1983). Kinetics of assembly of complex III into the yeast mitochondrial membrane. J. Biol. Chem. 258, 10649-10656.
- Simmaco, M., John, R. A., Barra, D., and Bossa, F. (1986). The primary structure of ornithine aminotransferase: Identification of active-site sequence and site of posttranslational proteolysis. *FEBS Lett.* **199**, 39-42.
- Stuart, R. A., Neupert, W., and Tropschug, M.(1987). Deficiency in mRNA splicing in a

cytochrome c mutant of *Neurospora crassa*: Importance of carboxy terminus for import of apocytochrome c into mitochondria. *EMBO J.* **6**, 2131–2137.

- Suissa, M., and Schatz, G. (1982). Import of proteins into mitochondria: Translatable mRNAs for imported mitochondrial proteins are present in free as well as mitochondria-bound cytoplasmic polysomes. J. Biol. Chem. 257, 13048-13055.
- Suissa, M., Suda, K., and Schatz, G. (1984). Isolation of the nuclear yeast genes for citrate synthase and fifteen other mitochondrial proteins by a new screening method. *EMBO* J. 3, 1773-1781.
- Takeda, M., Vassarotti, A., and Douglas, M. G. (1985). Nuclear genes coding the yeast mitochondrial adenosine triphosphatase complex: Primary sequence analysis of *ATP2* encoding the F_1 -ATPase β -subunit precursor. J. Biol. Chem. **260**, 15458–15465. (Also see correction: J. Biol. Chem. **261**, 10466.)
- Takiguchi, M., Miura, S., Mori, M., Tatibana, M., Nagata, S., and Kaziro, Y. (1984). Molecular cloning and nucleotide sequence of cDNA for rat ornithine carbamoyltransferase precursor. *Proc. Natl. Acad. Sci. U.S.A.* 81, 7412–7416.
- Taniuchi, H., Basile, G., Taniuchi, M., and Veloso, D. (1982). Solubilization of yeast mitochondrial cytochrome c synthetase. Fed. Proc., Fed. Am. Soc. Exp. Biol. 41, 1209.
- Teintze, M., Slaughter, M., Weiss, H., and Neupert, W. (1982). Biogenesis of mitochondrial ubiquinol:cytochrome c reductase (cytochrome bc₁ complex). J. Biol. Chem. 257, 10364-10371.
- Tzagoloff, A., and Meagher, P. (1972). Assembly of the mitochondrial membrane system: VI. Mitochondrial synthesis of subunit proteins of the rutamycin-sensitive adenosine triphosphatase. J. Biol. Chem. 247, 594-603.
- Urban-Grimal, D., Volland, C., Garnier, T., DeHoux, P., and Labbe-Bois, R., (1986). The nucleotide sequence of the *HEM1* gene and evidence for a precursor form of the mitochondrial 5-aminolevulinate synthase in *Saccharomyces cerevisiae*. J. Biochem. 156, 511-519.
- van den Boogaart, P., van Dijk, S., and Agsteribbe, E. (1982a). The mitochondrially made subunit 2 of *Neurospora crassa* cytochrome aa₃ is synthesized as a precursor protein. *FEBS Lett.* **147**, 97–100.
- van den Boogaart, P., Samallo, J., and Agsteribbe, E. (1982b). Similar genes for a mitochondrial ATPase subunit in the nuclear and mitochondrial genomes of *Neurospora crassa*. *Nature (London)* **298**, 187–189.
- van Loon, A. P. G. M., and Schatz, G. (1987). Transport of proteins to the mitochondrial intermembrane space: the "sorting" domain of the cytochrome c_1 presequence is a stop-transfer sequence specific for the mitochondrial inner membrane. *EMBO J.* **6**, 2441–2448.
- van Loon, A. P. G. M., and Young, E. T. (1986). Intracellular sorting of alcohol dehydrogenase isozymes in yeast: A cytosolic location reflects absence of an amino-terminal targeting sequence for the mitochondrion. *EMBO J.* 5, 161–165.
- van Loon, A. P. G. M., van Eijk, E., and Grivell, L. A. (1983a). Biosynthesis of the ubiquinol-cytochrome c reductase complex in yeast. Discoordinate synthesis of the 11-kd subunit in response to increased gene copy number. EMBO J. 2, 1765-1770.
- van Loon, A. P. G. M., Maarse, A. C., Riezman, H., and Grivell, L. A. (1983b). Isolation, characterization and regulation of expression of the nuclear genes of the core II and Rieske iron-sulfur proteins of the yeast ubiquinol-cytochrome c reductase. *Gene* 26, 261-272.
- van Loon, A. P. G. M., Kreike, J., de Ronde, A., van der Horst, G. T. J., Gasser, S. M., and Grivell, L. A. (1983c). Biosynthesis of the ubiquinol-cytochrome c reductase complex in yeast: Characterization of precursor forms of the 44-kDa, 40-kDa and 17-kDa sub-

17. Synthesis and Assembly of Mitochondrial Proteins

units and identification of individual messenger RNAs for these and other imported subunits of the complex. *Eur. J. Biochem.* 135, 457-463.

- van Loon, A. P. G. M., De Groot, R. J., De Haan, M., Dekker, A., and Grivell, L. A. (1984). The DNA sequence of the nuclear gene coding for the 17-kd subunit VI of the yeast ubiquinol-cytochrome c reductase: A protein with an extremely high content of acidic amino acids. *EMBO J.* 3, 1039–1043.
- van Loon, A. P. G. M., Brändli, A. W., and Schatz, G. (1986). The presequences of two imported mitochondrial proteins contain information for intracellular and intramito-chondrial sorting. *Cell* 44, 801–812.
- van Loon, A. P. G. M., Brändli, A. W., Peshold-Hurt, B., Blank, D., and Schatz, G. (1987). Transport of proteins to the mitochondrial intermembrane space: The "matrix-targeting" and the "sorting" domains in the cytochrome c₁ presequence. *EMBO J.* 6, 2433– 2439.
- van Steeg, H., Oudshoorn, P., van Hell, B., Polman, J. E. M., and Grivell, L. A. (1986). Targeting efficiency of a mitochondrial pre-sequence is dependent on the passenger protein. *EMBO J.* 5, 3643–3650.
- van Venetie, R., and Verkleij, A. K. (1982). Possible role of nonbilayer lipids in the structure of mitochondria: A freeze-fracture electron microscopy analysis. *Biochem. Biophys.* Acta 692, 397-405.
- Vassarotti, A., Chen, W.-J., Smagula, C., and Douglas, M. G. (1987a). Sequences distal to the mitochondrial targeting sequences are necessary for the maturation of the F_1 -ATPase β -subunit precursor in mitochondria. J. Biol. Chem. **262**, 411–418.
- Vassarotti, A., Stroud, R., and Douglas, M. G. (1987b). Independent mutations at the amino terminus of a protein act as surrogate signals for mitochondrial import. *EMBO J.* 6, 705-711.
- Verner, K., and Schatz, G. (1987). Import of an incompletely folded precursor protein into isolated mitochondria requires an energized inner membrane, but no added ATP. *EMBO J.* 6, 2449-2456.
- Viebrock, A., Perz, A., and Sebald, W. (1982). The imported preprotein of the proteolipid subunit of the mitochondrial ATP synthase from *Neurospora crassa*. Molecular cloning and sequencing of the mRNA. *EMBO J.* 1, 565–571.
- von Heijne, G. (1986a). Mitochondrial targeting sequences may form amphiphilic helices. *EMBO J.* **5**, 1335–1342.
- von Heijne, G. (1986b). Why mitochondria need a genome. FEBS Lett. 198, 1-4.
- Watanabe, K., and Kubo, S. (1982). Mitochondrial adenylate kinase from chicken liver: Purification, characterization and its cell-free synthesis. *Eur. J. Biochem.* 123, 587– 592.
- Weiss, H., and Kolb, H. J. (1979). Isolation of mitochondrial succinate:ubiquinone reductase, cytochrome c reductase and cytochrome c oxidase from Neurospora crassa using nonionic detergents. Eur. J. Biochem. 99, 139–149.
- Weiss-Brummer, B., Rödel, G., Schweyen, R. J., and Kaudewitz, F. (1982). Expression of the split gene *cob* in yeast: Evidence for a precursor of a "maturase" protein translated from inton 4 and preceeding exons. *Cell* 29, 527–536.
- Werner, S., Schwab, A. J., and Neupert, W. (1974). Precursors of cytochome oxidase in cytochrome-oxidase-deficient cells of *Neurospora crassa*: Comparison of the nuclear mutant *cni-1*, the cytoplasmic mutant *mi-1*, and copper-depleted wild type. *Eur. J. Biochem.* 49, 607-617.
- Wielburski, A., and Nelson, B. D. (1984). Heme *a* induces assembly of rat liver cytochrome *c* oxidase subunits I-III in isolated mitochondria. *FEBS Lett.* **177**, 291–294.
- Wielburski, A., Kuzela, S., and Nelson, B. D. (1982). Studies on the assembly of cytochrome oxidase in isolated rat hepatocytes. *Biochem. J.* 204, 239-245.

- Woodrow, G., and Schatz, G. (1979). The role of oxygen in the biosynthesis of cytochrome c oxidase of yeast mitochondria. J. Biol. Chem. 254, 6088-6093.
- Wright, R. M., Ko, C., Cumsky, M. G., and Poyton, R. O. (1984). Isolation and sequence of the structural gene for cytochrome c oxidase subunit VI from Saccharomyces cerevisiae. J. Biol. Chem. 259, 15401–15407.
- Yaffe, M. P., and Schatz, G. (1984). Two nuclear mutations that block mitochondrial protein import in yeast. Proc. Natl. Acad. Sci. U.S.A. 81, 4819-4823.
- Yaffe, M. P., Ohta, S., and Schatz, G. (1985). A yeast mutant temperature-sensitive for mitochondrial assembly is deficient in a mitochondrial protease activity that cleaves imported precursor polypeptides. *EMBO J.* 4, 2069–2074.
- Young, E. T., and Pilgrim, D. B. (1985). Isolation and DNA sequence of ADH3, a nuclear gene encoding the mitochondrial isozyme of alcohol dehydrogenase in Saccharomyces cerevisiae. Mol. Cell. Biol. 5, 3024–3034.
- Zimmermann, R., and Neupert, W. (1980). Transport of proteins into mitochondria: Posttranslational transfer of ADP/ATP carrier into mitochondria in vitro. Eur. J. Biochem. 109, 217–229.
- Zimmermann, R., Paluch, U., and Neupert, W. (1979a). Cell-free synthesis of cytochrome c. FEBS Lett. 108, 141-146.
- Zimmermann, R., Paluch, U., Sprinzl, M., and Neupert, W. (1979b). Cell-free synthesis of the mitochondrial ADP/ATP carrier protein of *Neurospora crassa*. Eur. J. Biochem. 99, 247-252.
- Zimmermann, R., Hennig, B., and Neupert, W. (1981). Different transport pathways of individual precursor proteins in mitochondria. *Eur. J. Biochem.* **116**, 455–460.
- Zwizinski, C., and Neupert, W. (1983). Precursor proteins are transported into mitochondria in the absence of proteolytic cleavage of the additional sequences. J. Biol. Chem. 258, 13340-13346.
- Zwizinski, C., Schleyer, M., and Neupert, W. (1983). Transfer of proteins into mitochondria: Precursor to the ADP/ATP carrier binds to receptor sites on isolated mitochondria. J. Biol. Chem. 258, 4071-4074.
- Zwizinski, C., Schleyer, M., and Neupert, W. (1984). Proteinaceous receptors for the import of mitochondrial precursor proteins. J. Biol. Chem. 259, 7850-7856.

A

Acetolysis, mannosidases and, 224 Acetylcholine, secretory vesicles and, 528 Acetylcholine receptor carbohydrate and, 74 translocation and, 33 N-Acetylgalactosamine carbohydrate and, 55 Golgi membranes and, 291, 310 N-Acetylglucosamine carbohydrate and, 55, 57 Dictyostelium and, 371, 380 endoplasmic reticulum proteins and, 261 exocytosis and, 438, 439, 444 Golgi membranes and, 310 lysosomal enzymes and, 467, 470, 473, 492-494 mannosidases and, 210, 212, 227, 228 endoplasmic reticulum, 219-221, 225 mycology and, 785 posttranslational modification and, 171, 188 α -N-Acetylglucosaminidase, lysosomal enzymes and, 466, 468, 470 β -N-Acetylglucosaminidase, lysosomal enzymes and, 466 N-Acetylglucosaminyltransferase, carbohydrate and, 56, 58 Acid hydrolases carbohydrate and, 51, 90 lectins, 82, 83, 89 oligosaccharide biosynthesis, 60 solubility, 65 tunicamycin, 71 Dict vostelium and, 364, 365, 375, 377, 380, 381 endocytosis and, 407 Golgi membranes and, 290 lysosomal enzymes and, 465, 480, 503 Acid phosphatase carbohydrate and, 73 Dictyostelium and, 365, 377, 381, 383, 388

Golgi membranes and, 294, 299 lysosomelike vacuole in yeast and, 330, 333, 335 mycology and, 787, 792 posttranslational modification and endoplasmic reticulum, 164, 167, 169, 170, 180 Golgi apparatus, 190, 194, 196 Acidification endocytosis and, 413, 417 lysosomelike vacuole in yeast and, 341, 342, 350 Acidity Dict yostelium and, 373, 374, 384, 388 endocytosis and, 403, 408, 412, 420, 427 Golgi membranes and, 302, 309 lysosomal enzymes and endocytosis, 483, 485, 488, 489 intracellular pathway, 498-500, 503, 504 junction of pathways, 505-508 recognition marker, 466, 467, 473 mycology and, 779, 780, 782, 783, 788 secretory vesicles and, 528, 543 Actin lysosomelike vacuole in yeast and, 318 posttranslational modification and, 198 secretory vesicles and, 528, 530 Activation, translocation and, 8, 19 Acylation, posttranslational modification and, 160, 182, 183 Adenosine 5'-monophosphate, Golgi membranes and, 299, 305, 307, 311 Adenovirus, endoplasmic reticulum proteins and, 251, 252, 261 Adenylate cyclase, lysosomelike vacuole in yeast and, 350 Adenylate kinase, mitochondrial proteins and, 693 Adhesion carbohydrate and, 88 extracellular matrixlike glycoproteins and, 568, 569, 574, 576-578 β -Adrenergic receptors, carbohydrate and, 74, 81

Adrenocorticotropin hormone carbohydrate and, 65 Dictyostelium and, 378 secretory vesicles and, 524, 537, 545 Aerolysin, secretion, gram negative bacteria and, 636, 637 Agammaglobulinemia, carbohydrate and, 72 Agglutination, posttranslational modification and, 185 Aggregation carbohydrate and, 64, 68, 77 Dictyostelium and, 383, 387, 388 mitochondrial proteins and, 679-681, 705 posttranslational modification and, 168 viral glycoproteins and, 139 Alanine, viral glycoproteins and, 129 Albumin carbohydrate and, 53, 55, 77 lysosomal enzymes and, 482, 495, 499 mannosidases and, 230 secretory vesicles and, 527, 536 Alcohol dehvdrogenase mitochondrial proteins and, 687 mycology and, 796 Alcohol dehydrogenase III, mitochondrial protein import and, 669 Alkaline phosphatase lysosomelike vacuole in yeast and, 320, 324, 326, 332, 345 posttranslational modification and, 180, 182, 188 secretion, gram negative bacteria and, 609, 633 Alkalinity, translocation and, 21 Alkylation, translocation and, 9 Alleles carbohydrate and, 70 lysosomelike vacuole in yeast and, 327, 340, 343 Alphaviruses, viral glycoproteins and, 115 Amantadine, viral glycoproteins and, 116 Amebas, Dictyostelium and, 370, 387, 388 Amides, lipoproteins and, 588-590 Amines endocytosis and, 412 secretory vesicles and, 532 Amino acids carbohydrate and intracellular transport signals, 55 lectins, 88 mutations, 70

oligosaccharide biosynthesis, 56, 61 solubility, 63, 64 Dictvostelium and, 386, 389 life history, 365, 388 secretion, 377, 379, 380 endocytosis and, 403, 405 endoplasmic reticulum proteins and, 244, 245, 277-279 cloning, 264, 269-275 ERp99, 254 signals, 248, 252 exocytosis and, 433, 436, 437 lipoproteins and, 589, 590, 592-595, 597-600 lysosomal enzymes and, 490, 503 lysosomelike vacuole in yeast and biosynthesis, 320-322, 324-326, 328 sorting, 335-337, 343 mannosidases and, 231 mitochondrial protein import and, 657-659, 671 mutation isolation, 661-663, 665, 667-669 mitochondrial proteins and, 680, 717, 725, 727, 728 proteolysis, 711, 715, 716 sequences, 685-689, 692-694 mycology and enzymes, 772, 774-780, 785, 788 Saccharomyces cerevisiae, 790, 793 nuclear transport and, 764 mechanisms, 749-753 yeast, 755-759, 761-763 posttranslational modification and endoplasmic reticulum, 165, 167-171, 178 Golgi apparatus, 192, 193, 195, 196 secretion, gram negative bacteria and, 639 early stages, 615, 619, 620 later stages, 628, 629, 633 translocation and, 5 mechanism, 17 membrane assembly, 26, 28, 30-32, 35, 37 targeting, 8, 11, 13 viral glycoproteins and, 145, 146 cytoplasmic domain, 132-134 features, 111, 112 genetic approach, 117, 120, 121 probes, 114 signal peptide region, 122, 125-130, 132

transmembrane anchor domain. 136-138, 140-142 Aminopeptidases carbohydrate and, 81 lysosomelike vacuole in yeast and, 326 posttranslational modification and, 197 Amylases, mycology and, 772 α -Amylases, mycology and, 772, 774, 778, 787 Antibodies carbohydrate and, 73, 86 Dictyostelium and, 365, 388 endocytosis and, 404, 411, 416 endoplasmic reticulum proteins and, 253-256, 259, 260, 277 exocytosis and, 435 extracellular matrixlike glycoproteins and, 565, 575, 577 Golgi membranes and, 295 lysosomal enzymes and, 481, 482, 484, 500, 501, 505, 507 lysosomelike vacuole in yeast and, 331, 342 mannosidases and, 215, 223, 226, 230, 232 mitochondrial protein import and, 660 mitochondrial proteins and, 699, 706, 707 mycology and, 775 nuclear transport and, 756 posttranslational modification and, 185, 186, 192 secretory vesicles and, 532, 537 translocation and, 33 viral glycoproteins and, 114, 116 Antichymotrypsin, carbohydrate and, 77 Antigens carbohydrate and inhibitors, 78, 80 mutations, 66 oligosaccharide biosynthesis, 61 tunicamycin, 76 Dictyostelium and, 379 endoplasmic reticulum proteins and, 244, 254 exocytosis and, 445 extracellular matrixlike glycoproteins and, 569 lysosomal enzymes and, 482, 500 lysosomelike vacuole in yeast and, 327, 335 mannosidases and, 225, 226

nuclear transport and, 751, 752, 756, 759, 761, 763 posttranslational modification and, 182, 193 secretion, gram negative bacteria and, 630 secretory vesicles and, 552 translocation and, 35 viral glycoproteins and, 133 Antipain, Dictyostelium and, 373, 374 α -Antitrypsin, mannosidases and, 218, 230 α_1 -Antitrypsin carbohydrate and inhibitors, 77-80 mutations, 69, 70 solubility, 63 tunicamycin, 72 Dictvostelium and, 379 Apocytochrome c mitochondrial protein import and, 661 mitochondrial proteins and, 703, 705, 716, 719, 721 precursor proteins, 679, 680 receptors, 696-699 Apoprotein, carbohydrate and, 75 Arginine exocytosis and, 436 mitochondrial protein import and, 667-669 mitochondrial proteins and, 689 nuclear transport and, 751 posttranslational modification and, 164, 193, 195 viral glycoproteins and cytoplasmic domain, 133 transmembrane anchor domain, 137-140, 143 Arylsulfatase, lysosomal enzymes and, 466 Asialoglycoprotein carbohydrate and, 76, 81, 83, 86 endocytosis and, 406, 408, 409, 419, 425 lysosomal enzymes and, 481, 482, 486, 506 Asparagine carbohydrate and, 52, 55, 56, 64 Dictyostelium and, 364, 369 endoplasmic reticulum proteins and, 247, 261 extracellular matrixlike glycoproteins and, 578 Golgi membranes and, 289, 291, 293 lysosomal enzymes and, 467, 472, 492

Asparagine (cont.) lysosomelike vacuole in yeast and, 319, 322. 324 mannosidases and, 209-212 mitochondrial protein import and, 662 mycology and, 775, 780 nuclear transport and, 751 posttranslational modification and, 162, 163, 195 endoplasmic reticulum, 171-179 translocation and, 5 Aspartic acid, mitochondrial protein import and, 669 Aspergillus mycology and, 772, 774-780, 782, 784, 786, 788-791, 796 posttranslational modification and, 169, 195 Astrocytoma cells, carbohydrate and, 74 ATP endocytosis and, 410, 413, 417, 422, 427 exocytosis and, 438 Golgi membranes and, 301, 306 lysosomal enzymes and, 485, 488, 497, 503 mitochondrial proteins and, 723-725, 728 cytosolic cofactors, 704 energy requirements, 700, 701, 703 precursor proteins, 679, 680 receptors, 696-698 sequences, 685, 694 translocation, 706 nuclear transport and, 749, 750 secretory vesicles and, 545 translocation and, 17, 19 ATPase endocytosis and, 416, 418 lysosomelike vacuole in yeast and, 319, 327, 342, 346 mitochondrial protein import and, 657, 671, 672 mutation isolation, 660, 664, 666, 668, 669 mitochondrial proteins and, 724-726 assembly, 718, 720 cytosolic cofactors, 705 energy requirements, 700-703 gene products, 716, 717 precursor proteins, 680, 681, 683, 684 proteolysis, 709, 711, 713, 716 receptors, 696-698

sequences, 688, 689, 694 translocation, 706, 707 secretory vesicles and, 527 translocation and, 3 Autophosphorylation, carbohydrate and, 81 Autoradiography endocytosis and, 422 Golgi membranes and, 294

B

B cell lymphoma, carbohydrate and, 61, 72 Bacillus licheniformis, lipoproteins and, 589, 590, 592, 598, 599 Bacteria Dictyostelium and, 387 extracellular matrixlike glycoproteins and, 576 gram negative, secretion and, see Secretion, gram negative bacteria and lipoproteins and, 587, 588, 590, 592, 601 mitochondrial protein import and, 663, 665 mitochondrial proteins and, 726-728 mycology and, 774, 785, 787 translocation and, 5, 8, 9, 21, 28 viral glycoproteins and, 118, 128 Basement membranes Dictyostelium and, 370 extracellular matrixlike glycoproteins and, 564, 565, 570, 572, 573 Bovine rhodopsin, translocation and, 29, 30 Brain microsomal α -mannosidase, glycoprotein processing and, 232, 233 Bromoconduritol, carbohydrate and, 78 Bunyaviruses, viral glycoproteins and, 115

С

Calcium carbohydrate and, 88 lysosomal enzymes and, 476, 480, 486 secretion, gram negative bacteria and, 625 secretory vesicles and, 530-532 Calmodulin endocytosis and, 411, 416 secretory vesicles and, 532 cAMP lysosomelike vacuole in yeast and, 350 secretory vesicles and, 530

Carbohydrate Dictyostelium and, 371, 380, 390 intracellular transport pathways, 382, 384, 386, 387 endocytosis and, 404, 413 endoplasmic reticulum proteins and, 245, 246, 252, 260, 261 exocytosis and, 437, 439 extracellular matrixlike glycoproteins and, 566 Golgi membranes and, 290-292 lysosomal enzymes and, 465, 466, 476 lysosomelike vacuole in yeast and biosynthesis, 319, 322-325, 328 sorting, 331, 332, 337, 340 mannosidases and, 209, 227, 231 mycology and, 775, 781, 785, 787, 788, 791 posttranslational modification and, 152, 178, 179, 182 asparagine-linked, 171-176 Golgi apparatus, 183, 184, 187-190, 194 secretion, gram negative bacteria and, 640 viral glycoproteins and, 112, 113, 129 Carbohydrate, glycoprotein traffic and, 51, 52, 89, 90 inhibitors, 76-81 intracellular transport signals, 52-55 lectins, 81-89 mutations, 66-70 oligosaccharide biosynthesis, 55-62 site-directed mutagenesis, 65, 66 solubility, 62-65 tunicamycin, 70-76 Carbonyl cyanide N-chlorophenylhydrazone mannosidases and, 217, 218 mitochondrial proteins and, 681, 683, 684, 686, 697, 700 Carboxypeptidase, posttranslational modification and, 193, 196 Carboxypeptidase Y carbohydrate and, 62, 63, 65, 71 Dictyostelium and, 367, 386 lysosomal enzymes and, 497 lysosomelike vacuole in yeast and biosynthesis, 319-326, 330 endocytosis, 350, 352 sorting, 330-333, 335-342, 345, 346 mannosidases and, 219 posttranslational modification and endoplasmic reticulum, 170, 175, 180-182

Golgi apparatus, 186-191, 196, 197 Carcinoma cells, endocytosis and, 407, 408 Caseinolysis, mycology and, 782 Castanospermine carbohydrate and, 76, 78 mannosidases and, 226 Catalysis Golgi membranes and, 294-296 lysosomal enzymes and, 465, 469 lysosomelike vacuole in yeast and, 327, 329, 350 mannosidases and, 211, 223, 231, 232 mitochondrial protein import and, 657 mitochondrial proteins and, 711, 713, 715, 718 secretion, gram negative bacteria and, 611, 620, 626, 630, 637, 639 viral glycoproteins and, 116 Cathepsins carbohydrate and, 65, 78 Dictyostelium and, 367, 371-373, 375, 389 lysosomal enzymes and, 467, 476, 490, 491, 493, 498-502 lysosomelike vacuole in yeast and, 328 mannosidases and, 226 **cDNA** carbohydrate and, 65 endoplasmic reticulum proteins and, 251 cloning, 264-274 ERp99, 256, 260 exocytosis and, 432, 433, 442 extracellular matrixlike glycoproteins and, 567, 568, 571, 572 lysosomal enzymes and, 490 mycology and, 774, 776, 785 posttranslational modification and, 193 translocation and, 13, 15 viral glycoproteins and, 122, 132 Cellobiohydrolases, mycology and, 785, 786 Cellobiose, mycology and, 783, 784, 786, 787 Cellulases, mycology and, 783-789 Ceramide, Golgi membranes and, 291, 297 Cerebrosides, Golgi membranes and, 291 Ceruloplasmin carbohydrate and, 72, 79 mannosidases and, 230 Chinese hamster ovary cells carbohydrate and, 58, 67, 68, 79 endocytosis and, 404, 408 exocytosis and, 441, 445

Chinese hamster ovary cells (cont.) extracellular matrixlike glycoproteins and, 569 Golgi membranes and, 297, 309 lysosomal enzymes and endocytosis, 481-484, 486, 488 intracellular pathway, 497, 499, 502, 503 junction of pathways, 505, 506 receptors, 477-479 recognition marker, 467, 473, 474 mannosidases and, 215, 222, 227 Chloramphenicol, mitochondrial proteins and, 719 Chlorides, Golgi membranes and, 301 Chloroplasts Dictyostelium and, 364, 389 endoplasmic reticulum proteins and, 244 lysosomelike vacuole in yeast and, 338 mitochondrial protein import and, 665 mitochondrial proteins and, 682, 687, 694, 695 secretion, gram negative bacteria and, 620 Chloroquine Dictyostelium and, 374 endocytosis and, 412 lysosomal enzymes and, 482, 484, 485, 500, 505, 506 viral glycoproteins and, 139-141 Cholesterol endocytosis and, 403-405, 416 endoplasmic reticulum proteins and, 253 Golgi membranes and, 292, 293, 297 lysosomal enzymes and, 492 Choline, Golgi membranes and, 301 Chromaffin cells exocytosis and, 445 secretory vesicles and, 530, 532, 552 Chromosomes lipoproteins and, 594 mitochondrial protein import and, 664, 666 mycology and, 777 secretion, gram negative bacteria and, 623 Chymosin, mycology and, 779, 780, 789 Chymotrypsin Dictyostelium and, 373 mannosidases and, 231 posttranslational modification and, 193, 194, 196 Clathrin endocytosis and, 402, 406, 407, 411, 412, 414-418, 429, 431

exocytosis and, 443, 444 lysosomal enzymes and, 497, 500 lysosomelike vacuole in yeast and, 318, 352. 353 secretory vesicles and, 543-545, 554 viral glycoproteins and, 116 Cleavage, see also Signal sequence cleavage Dictyostelium and, 365, 369, 371 endoplasmic reticulum proteins and, 251, 262, 272, 276 exocytosis and, 433, 435 Golgi membranes and, 299 lipoproteins and, 593-595, 598, 599 lysosomal enzymes and, 470, 490, 494 lysosomelike vacuole in yeast and, 328, 330, 335, 338, 344 mannosidase I and, 221, 224, 225 mannosidase II and, 221, 224, 225 mannosidases and, 212, 216, 217, 219, 233 mitochondrial protein import and, 659, 662, 667-669 mitochondrial proteins and, 685, 693, 697, 703, 717 proteolysis, 711, 713, 715, 716 mycology and, 772, 776, 777, 784, 792, 793 posttranslational modification and, 187, 191, 193, 195-198 secretion, gram negative bacteria and, 636, 637, 639-641 early stages, 611, 612, 615 later stages, 624, 627, 628 secretory vesicles and, 542 Cloning carbohydrate and, 65 Dictyostelium and, 389 endocytosis and, 402, 429 endoplasmic reticulum proteins and, 251, 256, 260 cDNA, 264-274 exocytosis and, 432 extracellular matrixlike glycoproteins and, 567, 568, 572, 573 Golgi membranes and, 309 lipoproteins and, 594, 597 lysosomelike vacuole in yeast and, 320, 327, 342-345, 352 mannosidases and, 231, 233 mitochondrial protein import and, 659, 661-664, 671 mitochondrial proteins and, 684

mycology and enzymes, 774, 776-779, 782, 785, 786, 788, 789, 791 Saccharomyces cerevisiae, 793 nuclear transport and, 755 posttranslational modification and, 163. 169, 183, 193, 195 secretion, gram negative bacteria and, 618, 620, 621, 623, 626, 628, 639 translocation and, 13, 15 viral glycoproteins and, 145 features, 110 genetic approach, 122 polarized cells, 144 probes, 113 signal peptide region, 128 Colchicine endocytosis and, 412 Golgi membranes and, 297 Colicins mitochondrial protein import and, 665 secretion, gram negative bacteria and, 636, 638 early stages, 618-620 later stages, 622-625, 627-633 Collagens, extracellular matrixlike glycoproteins and, 564, 570, 571 Colostrum, mannosidases and, 211 Common antigen-1, Dictyostelium and, 369, 382 Concanavalin A carbohydrate and, 68, 79 mannosidases and, 214, 224, 227, 232 posttranslational modification and, 176 Coronavirus endoplasmic reticulum proteins and, 251 viral glycoproteins and, 114, 115 Cross-linkage, translocation and, 11 CURL endocytosis and, 406, 408, 425 lysosomal enzymes and, 481, 482, 486, 495 Cycloheximide carbohydrate and, 73 lysosomal enzymes and, 483, 497 mitochondrial proteins and, 683, 684 viral glycoproteins and, 115 Cysteine Dictyostelium and, 371-374, 389 endocytosis and, 403-405 exocytosis and, 433, 435, 437

lipoproteins and, 588, 590, 599, 600 mitochondrial protein import and, 661, 669 mitochondrial proteins and, 699, 721 posttranslational modification and, 182 secretion, gram negative bacteria and, 612, 627, 636 viral glycoproteins and, 127, 128, 138 Cytidine 5'-monophosphate, Golgi membranes and, 299, 305, 307, 309 Cytochemistry, Golgi membranes and, 293, 294 Cytochrome oxidase, translocation and, 3 Cytochromes endoplasmic reticulum proteins and, 248, 251 Golgi membranes and, 292 mitochondrial protein import and, 657, 658, 660-662, 665, 666 mitochondrial proteins and, 721-725, 727, 728 assembly, 718-720 cytosolic cofactors, 704 energy requirements, 701, 703 gene products, 716-718 precursor proteins, 679-681, 683 proteolysis, 710, 711, 713, 715 receptors, 696-699 sequences, 685, 687-689, 693-695 translocation, 706 Cytoplasm carbohydrate and, 65, 67 endocytosis and, 403, 405, 411, 413, 416, 431 endoplasmic reticulum proteins and, 243, 245, 274, 278, 279 ERp99, 262 signals, 248, 251-253 exocytosis and, 433, 435, 436, 439, 442, 444 Golgi membranes and, 291, 294, 295, 298-300, 312 lipoproteins and, 588, 590, 593-595, 597 lysosomelike vacuole in yeast and, 318 biosynthesis, 324 sorting, 336, 344-346 mitochondrial protein import and, 656, 670, 671 mutation isolation, 659, 661, 664, 665 signal sequences, 657, 658 mitochondrial proteins and, 678, 726, 727 assembly, 718 cytosolic cofactors, 704 sequences, 684, 687

Cytoplasm (cont.) mycology and, 780 nuclear transport and, 747, 748, 764 mechanisms, 749-752 yeast, 754, 755, 760-762 posttranslational modification and, 160-162 endoplasmic reticulum, 164, 167, 172, 180, 183 yeast mutation, 162, 163 secretion, gram negative bacteria and, 607, 608, 637-641 early stages, 611, 613, 615, 619, 620 later stages, 624-626, 630-634 secretory vesicles and, 521, 523, 526, 528, 533, 536, 550 translocation and, 4, 8 mechanism, 15, 19, 20 membrane assembly, 22, 25, 26, 29-31, 33, 35, 36 targeting, 9, 10, 12, 13 viral glycoproteins and endocytic pathway, 116 features, 109 genetic approach, 118 mutation, 132-135 polarized cells, 144 probes, 114 signal peptide region, 123, 127, 128, 130 transmembrane anchor domain, 136, 137, 142 Cytosol endocytosis and, 420 exocytosis and, 438 lysosomelike vacuole in yeast and, 343 mannosidases and, 212-221, 232 mitochondrial protein import and, 671 mitochondrial proteins and, 678, 703-705, 721, 725, 728 assembly, 718 gene products, 716 precursor proteins, 679-681, 683 receptors, 697 sequences, 687, 694 Cytotoxicity, carbohydrate and, 68

D

Degradation carbohydrate and, 52

mutations, 68 site-directed mutagenesis, 65 solubility, 65 tunicamycin, 72, 74 Dictyostelium and, 372 endocytosis and, 403, 404, 407, 413, 428, 429, 431 endoplasmic reticulum proteins and, 262, 277 Golgi membranes and, 298 lipoproteins and, 595 lysosomal enzymes and, 464, 479 lysosomelike vacuole in yeast and, 327, 348. 349 mannosidases and, 214, 224 mitochondrial proteins and, 681, 703, 718 mycology and, 772, 783, 789, 791 nuclear transport and, 749, 756, 762 posttranslational modification and, 195, 197 translocation and, 4 viral glycoproteins and signal peptide region, 125, 127 transmembrane anchor domain, 139-141, 143 Deletion endoplasmic reticulum proteins and, 245, 246 lipoproteins and, 597, 599 lysosomelike vacuole in yeast and, 321, 335, 342, 352 mitochondrial protein import and, 658, 667, 668, 671 mitochondrial proteins and, 686, 715 mycology and, 790 nuclear transport and, 752, 755, 759 posttranslational modification and, 167-169, 180 secretion, gram negative bacteria and, 630 translocation and, 9, 30 viral glycoproteins and signal peptide region, 123-125 transmembrane anchor domain, 137, 140, 141 Deoxymannojirimycin, mannosidases and, 232 endoplasmic reticulum, 215, 216, 218 mannosidase I, 222, 224-226 Deoxynorjirimycin carbohydrate and, 70 Dictyostelium and, 386

executosis and, 437, 440 ly:osomal enzymes and, 474 minnosidases and, 226 1-Doxynoriirimycin, carbohydrate and, 76-81, 90 Diacylglycerol, secretory vesicles and, 530, 532 Diacytosis, endocytosis and, 409 Dictostelium, lysosomal enzymes in, 364. 365, 390, 479, 480, 497 intracellular transport pathways, 381 enzyme localization, 384, 386, 387 α -mannosidase, 384, 385 modification mutants, 380, 383 secretion defects, 381, 382 structural mutants, 383, 384 life history, 365 maturation of precursors, 371-375 posttranslational modifications. 369-371 in vitro studies. 367-369 in vivo studies. 365-367 regulation, 387 posttranslational modification, 388, 389 synthesis, 387, 388 secretion, 375 constituitive secretory pathways, 376, 377 receptors, 378-380 regulation, 377, 378 veast. 336 Differentiation Dictvostelium and, 387 extracellular matrixlike glycoproteins and, 563, 570, 580 Dihydrofolate reductase mitochondrial protein import and, 658, 659 mitochondrial proteins and, 680, 699, 715 sequences, 685, 687, 693, 694 Dipeptidyl aminopeptidase A, mycology and, 793 Dipeptidyl aminopeptidases lysosomelike vacuole in yeast and, 319, 320, 327, 343-345 posttranslational modification and, 193, 195, 196 Diptheria toxin, lysosomal enzymes and, 486, 488, 489 Disaccharides carbohydrate and, 57, 80

Golgi membranes and, 302, 304 Disulfides endoplasmic reticulum proteins and, 248, 278 extracellular matrixlike glycoproteins and, 566, 569, 570 mycology and, 792 translocation and, 5 viral glycoproteins and, 11. 143 DNA carbohydrate and, 62 Dictvostelium and, 364, 386, 388 endoplasmic reticulum proteins and, 246. 256, 265, 269, 277, 280 lipoproteins and, 590, 592, 597 lysosomelike vacuole in yeast and, 320. 344 mitochondrial protein import and, 671 mitochondrial proteins and, 694 mycology and, 773, 778, 785 nuclear transport and mechanisms, 749, 751 yeast, 755, 757, 759, 760, 762, 763 posttranslational modification and, 180, 181 secretion, gram negative bacteria and, 621, 622, 628 secretory vesicles and, 538 translocation and, 15, 30 viral glycoproteins and, 145, 146 cytoplasmic domain, 132, 133 features, 110 genetic approach, 120, 122 polarized cells, 144 probes, 113, 115 signal peptide region, 127 Docking protein mitochondrial proteins and, 682 posttranslational modification and, 161, 163 viral glycoproteins and, 117 Dolichol phosphate carbohydrate and, 56, 67, 71 exocytosis and, 439 posttranslational modification and, 171, 172, 174, 175, 179 Dolichol pyrophosphate carbohydrate and, 59 Golgi membranes and, 291 lysosomelike vacuole in yeast and, 322 Dopamine, secretory vesicles and, 528

Drosophila, extracellular matrixlike glycoproteins and, 573 Drosophila melanogaster, endoplasmic reticulum proteins and, 272, 274, 277

E

EDTA endoplasmic reticulum proteins and, 253, 254 lipoproteins and, 588 mitochondrial proteins and, 710 Egasyn Dictyostelium and, 380 endoplasmic reticulum proteins and, 251, 252 Electron microscopy carbohydrate and, 86 Dictyostelium and, 371, 388 endocytosis and, 402, 406-408, 421, 424, 426 endoplasmic reticulum proteins and, 253 exocytosis and, 440, 442, 444 Golgi membranes and, 290 lysosomal enzymes and, 481, 483, 492, 495, 500 mannosidases and, 217 mitochondrial proteins and, 706, 707 nuclear transport and, 748, 753 posttranslational modification and, 178 secretory vesicles and, 543 Electrophoresis Dictyostelium and, 365, 382 endocytosis and, 416, 422, 427 extracellular matrixlike glycoproteins and, 569 lysosomal enzymes and, 464, 466, 467, 477-479, 484 lysosomelike vacuole in yeast and, 323 mannosidases and, 225 mycology and, 776, 780 posttranslational modification and, 183 Elongation mannosidases and, 211 mitochondrial proteins and, 682, 684 posttranslational modification and, 179, 183, 188 translocation and, 5 mechanism, 19 membrane assembly, 30, 35 targeting, 11-13

Endocytosis, 401, 402, 404, 445, 446, see also Receptor-mediated endocytosis biochemical characterization, 414 clathrin-coated pits, 414-418 endosomes, 418-427 lysosomes, 427, 428 recycling pathway, 428, 429 carbohydrate and, 86, 87 diacytosis, 409 Dictyostelium and, 370 genetic analysis somatic cell mutants, 412, 413 yeast, 413, 414 Golgi membranes and, 292 inhibitors, 410-412 ligand recycling, 408, 409 ligands, 403-405 lysosomal delivery, 405-408 lysosomal enzymes and disruption, 483-490 intracellular pathway, 497, 499, 500, 502, 503 junction of pathways, 504-508 pathway, 481-483 lysosomelike vacuole in yeast and, 319, 352 fluid phase, 346, 347 mating response, 349, 350 pathway coupling, 350-352 receptor mediated, 348, 349 phosphorylation, 429-431 polarized cells, 409, 410 secretory vesicles and, 525, 543, 545, 554 translocation and, 4 viral glycoproteins and, 116, 139 Endo- α -D-mannosidase, carbohydrate and, 59 Endoglycosidases, posttranslational modification and, 187 Endomannosidases, carbohydrate and, 80 Endo- β -N-acetylglucosaminidase H carbohydrate and, 54, 63, 79 Dictyostelium and, 368, 369 endocytosis and, 404 endoplasmic reticulum proteins and, 247, 259-262, 265 lysosomal enzymes and, 477, 478, 490 intracellular pathway, 493-495 recognition marker, 467, 471-474 mannosidases and, 219, 220, 230 mycology and, 776, 777, 780

posttranslational modification and, 175, 176, 183, 187, 191 viral glycoproteins and, 112, 113 Endopeptidase, posttranslational modification and, 194 Endoplasmic reticulum, see also Rough endoplasmic reticulum carbohydrate and, 51 inhibitors, 78, 80, 81 intracellular transport signals, 54, 55 lectins, 86, 88 mutations, 67, 70 oligosaccharide biosynthesis, 58 solubility, 63 tunicamycin, 74 Dictyostelium and, 364, 389, 390 life history, 367, 369, 371, 372, 375 secretion, 378-380, 383, 386 endocytosis and, 404 exocytosis and, 432, 435, 440, 443 Golgi membranes and, 290-295, 297 lysosomal enzymes and, 474, 490 lysosomelike vacuole in yeast and, 318, 346, 353 biosynthesis, 320-322 sorting, 330, 331, 338 mannosidases and, 211-223 mitochondrial protein import and, 665 mitochondrial proteins and, 682 mycology and, 781, 787, 789, 790 nuclear transport and, 748 posttranslational modification and, 160-163, 198 asparagine-linked carbohydrates, 171-175 asparagine-linked oligosaccharides, 175-178 core oligosaccharides, 180, 181 fatty acid, 182, 183 Golgi apparatus, 183, 184, 186-189, 194 mutation, 170, 171 O-linked oligosaccharides, 178, 179 phosphoryl groups, 181, 182 signal sequence cleavage, 163-170 secretory vesicles and, 533, 536, 539, 549-552 translocation and, see Translocation viral glycoproteins and, 145, 146 genetic approach, 119, 121 signal peptide region, 128, 130 Endoplasmic reticulum proteins, sorting of, 243-246, 274, 276-280

cloning, 264-275 ERp99 membrane topography, 262-264 metabolic fate, 260-262 preparation, 253-256 subcellular distribution, 256-258 tissue distribution, 258-260 signals, 247-253 site, 246, 247 Endosomes endocytosis and, 406, 418-428 Golgi membranes and, 301, 302 lysosomal enzymes and, 500, 503, 505, 506 endocytosis, 482, 488, 489 lysosomelike vacuole in yeast and, 341, 347, 350 viral glycoproteins and, 116, 117 Endothelial cells carbohydrate and, 73 Dictyostelium and, 377 endocytosis and, 410 extracellular matrixlike glycoproteins and, 564 Endotoxin, extracellular matrixlike glycoproteins and, 565 Enzymes carbohydrate and inhibitors, 77, 78, 80 lectins, 83, 88, 89 mutations, 68 oligosaccharide biosynthesis, 57-61 solubility, 62, 63 tunicamycin, 71, 73 Dictyostelium and, 364 endocytosis and, 406, 413, 416, 427 endoplasmic reticulum proteins and, 248, 256, 277, 278 exocytosis and, 441-444 extracellular matrixlike glycoproteins and, 572 Golgi membranes and, 289, 292, 293, 311 methods, 294, 295 orientation, 298, 299 transport, 301 lipoproteins and, 592-595, 598, 600, 601 lysosomal, see Lysosomal enzymes lysosomelike vacuole in yeast and biosynthesis, 319, 324-328 sorting, 333, 336, 338, 342 mannosidase I and, 222-226

Enzymes (cont.) mannosidase II and, 227, 230-232 mannosidases and, 211, 212, 232, 233 endoplasmic reticulum, 212, 214-216, 219, 221 mitochondrial protein import and, 659, 662, 663, 665, 666, 668-671 mitochondrial proteins and, 699, 703, 705, 710, 713 mycology and, see Mycology, secretion research and posttranslational modification and, 160, 162, 198 endoplasmic reticulum, 167-169, 171, 174-176, 179, 180 Golgi apparatus, 186-190, 193-197 secretion, gram negative bacteria and, 608, 613, 618, 636, 637 secretory vesicles and, 527, 528, 532, 545 translocation and, 21, 38 viral glycoproteins and, 146 features, 109 probes, 113 signal peptide region, 125, 127, 128 Epidermal growth factor carbohydrate and, 74, 81 endocytosis and, 405, 407, 408, 414, 418, 419, 425, 428, 429, 431 Epidermal growth factor receptor, translocation and, 35 Epithelial cells carbohydrate and, 73, 76, 81 Dictyostelium and, 389 endocytosis and, 410 extracellular matrixlike glycoproteins and, 564 secretory vesicles and, 523-525, 529 viral glycoproteins and, 115, 144, 147 Epitopes, Dictyostelium and, 369 Epoxide hydrolase, endoplasmic reticulum proteins and, 251, 252 Erythrocytes, Golgi membranes and, 295 Escherichia coli carbohydrate and, 62 lipoproteins and, 588-590, 592-595, 598, 599, 601 lysosomelike vacuole in yeast and, 321, 342 mitochondrial protein import and, 656, 657, 663 mycology and, 779, 785

nuclear transport and, 752, 754, 755, 762 secretion, gram negative bacteria and, 607, 609, 636, 637, 639, 641 early stages, 615-620 later stages, 622, 623, 626-629, 631, 633, 634 translocation and, 9, 33 viral glycoproteins and, 128 Ethylenebis, carbohydrate and, 88 N-Ethylmaleimide, translocation and, 19 Eukaryotes carbohydrate and, 62 Dict vostelium and, 390 endocytosis and, 401, 446 endoplasmic reticulum proteins and, 259, 260, 269, 280 exocytosis and, 431 extracellular matrixlike glycoproteins and, 580 Golgi membranes and, 290 lysosomelike vacuole in yeast and biosynthesis, 322 endocytosis, 318, 319, 352, 353 sorting, 337, 341 mitochondrial protein import and, 663 mitochondrial proteins and, 677, 682, 716, 728 nuclear transport and, 748, 754 posttranslational modification and, 160, 198 cytoplasm, 162 endoplasmic reticulum, 170-172, 178, 182 Golgi apparatus, 183, 186, 187, 191 secretion, gram negative bacteria and, 618 translocation and, 3, 5 mechanism, 19, 21 membrane assembly, 28 targeting, 9 viral glycoproteins and, 146 features, 109 genetic approach, 119, 121 signal peptide region, 126, 128, 130 transmembrane anchor domain, 143 Exocytosis, 401, 402, 409, 425, 431, 432 biochemical characterization Golgi, 444 nuclear envelope, 442, 443 RER, 442, 443 secretory vesicles, 444, 445 carbohydrate and, 55

Dict vostelium and, 376, 377 genetic analysis, 440, 441 inhibitors, 439, 440 lysosomal enzymes and, 497 pathways, 438, 439 secretory vesicles and, 527, 530-532, 539, 552 VSV G protein, 432 domain structure, 433 morphology, 434, 435 posttranslational modification, 435 reconstitution, 438 structure, 435-438 Extracellular matrixlike glycoproteins, macrophages and, 563-566, 579, 580 biosynthesis fibronectin, 566-570 laminin, 570-573 proteoglycans, 573, 574 thrombospondin, 570 functions cell interactions, 577-579 phagocytosis, 574-576

F

 α -Factor endocytosis and, 413 lysosomelike vacuole in yeast and biosynthesis, 321, 322 endocytosis, 348, 349 sorting, 330, 344, 345 mycology and, 774, 780, 789, 793, 794 posttranslational modification and, 162, 163 endoplasmic reticulum, 180, 181 Golgi apparatus, 188, 190-197 secretory vesicles and, 527 Fatty acids endocytosis and, 403 lipoproteins and, 588-590, 592 posttranslational modification and, 182, 183 secretion, gram negative bacteria and, 625 Fatty acyl chains, secretion, gram negative bacteria and, 627, 632, 636 Ferritin endocytosis and, 422, 424, 425 lysosomal enzymes and, 506, 507 nuclear transport and, 753 secretory vesicles and, 552

 α -Fetoprotein, carbohydrate and, 72, 79 Fibrin, extracellular matrixlike glycoproteins and, 570 Fibrinogen, carbohydrate and, 72 Fibroblasts carbohydrate and inhibitors, 81 intracellular transport signals, 55 lectins, 83, 86 solubility, 63, 65 Dictyostelium and, 364, 370-375, 377, 378 endocytosis and, 407, 411, 413, 419 endoplasmic reticulum proteins and, 244, 265 Golgi membranes and, 297, 302 lysosomal enzymes and, 464, 465 endocytosis, 482, 483, 485, 489 intracellular pathway, 491, 493, 495, 496, 498-502 junction of pathways, 504, 505 receptors, 476-478, 480 recognition marker, 465, 467, 468, 471, 473, 475, 476 lysosomelike vacuole in yeast and, 322-324, 328, 331 mannosidases and, 219, 226 mitochondrial proteins and, 681 secretory vesicles and, 528, 542 viral glycoproteins and, 139 Fibronectin carbohydrate and, 65, 72, 79, 81 extracellular matrixlike glycoproteins and, 564, 565, 579, 580 biosynthesis, 556-570 functions, 575-577 Filipin, Golgi membranes and, 298, 301, 307 Flaviviruses, viral glycoproteins and, 114 Fluorescence endocytosis and, 406, 408, 419, 421, 427 exocytosis and, 435 Golgi membranes and, 297 lysosomelike vacuole in yeast and, 346, 347 Fluorescence-activated cell sorting, posttranslational modification and, 186 Fractionation carbohydrate and, 54 Dictyostelium and, 369, 370, 372 endocytosis and, 405, 425, 428 endoplasmic reticulum proteins and, 247, 256, 257, 262

Fractionation (cont.) exocytosis and, 432 Golgi membranes and, 293 lysosomal enzymes and, 470, 481-483, 492, 493 lysosomelike vacuole in yeast and, 318 mannosidases and, 214, 222, 223 mitochondrial protein import and, 667 mitochondrial proteins and, 704 nuclear transport and, 756 posttranslational modification and, 163, 178, 183 secretion, gram negative bacteria and, 620 translocation and, 10 Fragmentation, Golgi membranes and, 292 Friend erythroleukemia virus, carbohydrate and, 70 Fructose 1-phosphate, lysosomal enzymes and, 466 Fucose carbohydrate and, 55, 57, 59, 86 Dictyostelium and, 371, 388 mannosidases and, 210, 211 viral glycoproteins and, 112, 120 Fucosyltransferase carbohydrate and, 56 mannosidases and, 222 Fungi, mycology and, 771, 772, 796, 797 enzymes, 774, 778, 782-785, 787, 789, 791 Saccharomyces cerevisiae, 795, 796 Fusion endocytosis and, 414, 422 exocytosis and, 432, 436-440, 445 extracellular matrixlike glycoproteins and, 574 lysosomal enzymes and, 469 lysosomelike vacuole in yeast and biosynthesis, 324, 325 endocytosis, 346, 350 sorting, 331, 337, 340 mitochondrial protein import and, 656, 657, 670

657, 670 mutation isolation, 660, 662-669 mitochondrial proteins and, 678, 699, 715 precursor proteins, 682 sequences, 685-689, 693, 694 mycology and, 774, 779-781 nuclear transport and, 752, 754-756, 758, 761

posttranslational modification and, 189, 190, 195, 196

secretion, gram negative bacteria and, 631-634 secretory vesicles and formation, 538, 549-551, 554 structure, 525, 526, 530-532 translocation and, 15, 31 viral glycoproteins and endocytic pathway, 117, 118 features, 111 polarized cells, 144 signal peptide region, 125

G

G proteins carbohydrate and inhibitors, 78, 80 site-directed mutagenesis, 65, 66 solubility, 63, 64 Dictyostelium and, 379 endoplasmic reticulum proteins and, 24 246, 274 exocytosis and, 432-438, 441, 444, 446 mannosidases and, 217 posttranslational modification and, 180 viral glycoproteins and cytoplasmic domain, 132-134 features, 112 genetic approach, 118-121 polarized cells, 144, 145 transmembrane anchor domain, 136, 137, 140, 142 Galactose carbohydrate and, 55, 57, 59 endocytosis and, 409 exocytosis and, 444 Golgi membranes and, 299, 307, 309, 3... lysosomal enzymes and, 493 mannosidases and, 210, 211, 226, 227 mitochondrial protein import and, 666 nuclear transport and, 755 posttranslational modification and, 188 Galactosidase, mannosidases and, 226 β -Galactosidase Dictyostelium and, 372, 377 lysosomal enzymes and, 491, 502, 508 endocytosis, 481, 482, 484, 486 receptors, 77, 80, 488 recognition marker, 466 mitochondrial protein import and, 657, 658, 664, 666-668

mitochondrial proteins and, 685-687 mycology and, 788, 789, 795 nuclear transport and, 752, 754-756, 758, 761, 763 secretion, gram negative bacteria and, 619, 631, 632 Galactosylation, Golgi membranes and, 294, 307 Galactosyltransferase carbohydrate and, 56 Dictvostelium and, 388 Golgi membranes and, 293, 297-302, 310 lysosomal enzymes and, 470, 492, 493 mannosidases and, 221, 222, 228 viral glycoproteins and, 112 Gangliosides, Golgi membranes and, 291, 307 Gene dosage, lysosomelike vacuole in yeast and, 333 GERL, lysosomal enzymes and, 482, 506, 507 intracellular pathway, 492, 494, 497, 499, 500, 502, 504 Globin, translocation and, 15 α -Globin, translocation and, 17 Globomycin lipoproteins and, 588-590, 594, 600 secretion, gram negative bacteria and, 619 Glucanases, mycology and, 791, 795 Glucoamylase mycology and, 772, 774-778, 782 posttranslational modification and, 169, 170, 195 Glucocerebrosidase, Dictyostelium and, 389 Glucocerebroside, Golgi membranes and, 298 β -Glucoronidase Dictyostelium and, 367, 371, 372, 380, 389 lysosomal enzymes and, 476, 483, 484, 505 intracellular pathway, 450-452, 490, 491 recognition marker, 465-467, 471, 473, 474, 476 Glucosamine carbohydrate and, 72 lysosomal enzymes and, 467 viral glycoproteins and, 112 Glucose carbohydrate and, 90

inhibitors, 76-80 lectins, 88, 89 mutations, 70 oligosaccharide biosynthesis, 56-60 Dictyostelium and, 382, 384, 386 endoplasmic reticulum proteins and, 278, 279 exocytosis and, 433, 435, 437, 442, 444 Golgi membranes and, 291, 302 lysosomal enzymes and, 467, 471, 474, 475 lysosomelike vacuole in yeast and, 321 mannosidases and, 210, 217, 226 mycology and, 784, 789 posttranslational modification and, 162, 167, 169, 175 translocation and, 34 viral glycoproteins and, 112 Glucose 6-phosphatase, Golgi membranes and, 292, 294 Glucose 6-phosphate endoplasmic reticulum proteins and, 257 lysosomal enzymes and, 480 Glucosidases carbohydrate and, 78, 79 endoplasmic reticulum proteins and, 247, 248, 251, 261 Golgi membranes and, 291 lysosomal enzymes and, 474 mannosidases and, 210, 212, 214, 215, 224, 226 mycology and, 786 posttranslational modification and, 176, 177 α -Glucosidases carbohydrate and inhibitors, 77, 79, 80 oligosaccharide biosynthesis, 56, 58, 59 Dictyostelium and, 372, 377, 382, 386, 388, 389 lysosomal enzymes and, 467, 476, 501 β -Glucosidases Dict vostelium and intracellular transport pathways, 383, 384, 386 life history, 365, 367-369, 372-376 regulation, 387, 388 secretion, 377, 378, 380 mycology and, 784, 786, 787 Glucosylation carbohydrate and, 60, 79 lysosomal enzymes and, 473

Glucosylmannose disaccharide, carbohydrate and, 59 Glutamate, mitochondrial protein import and, 668 Glutamic acid carbohydrate and, 70 mycology and, 786 viral glycoproteins and, 129, 140 Glutamine, mitochondrial proteins and, 715 Glycan chains, carbohydrate and, 52, 89, 90 inhibitors, 77, 79, 80 intracellular transport signals, 54, 55 lectins, 86-88 mutations, 68, 70 oligosaccharide biosynthesis, 56, 59-61 solubility, 62-64 tunicamycin, 75 Glycans, posttranslational modification and, 179 Glycerides, viral glycoproteins and, 128 Glycerol lipoproteins and, 588, 589, 592 mitochondrial protein import and, 664, 668, 669 Glycerylcysteine, lipoproteins and, 588 Glycine mitochondrial protein import and, 667 secretion, gram negative bacteria and, 629, 630 viral glycoproteins and, 129 Glycolipids carbohydrate and, 56 Dictyostelium and, 380 extracellular matrixlike glycoproteins and, 572 Golgi membranes and, 290, 297-299, 309 Glycopeptides carbohydrate and, 79 endoplasmic reticulum proteins and, 247 lysosomal enzymes and, 467, 468, 471 Glycophorin A, carbohydrate and, 75 Glycoprotein Dictyostelium and, 364, 370, 382, 384 endocytosis and, 413 endoplasmic reticulum proteins and, 245, 276 cloning, 274 ERp99, 254, 256, 261 signals, 251 exocytosis and, 432, 439, 441-443, 445 extracellular matrixlike, see Extracellular matrixlike glycoproteins

Golgi membranes and, 289, 290, 292, 293, 299, 309 lysosomal enzymes and, 466, 468, 474, 475, 491 lysosomelike vacuole in yeast and, 331. 345 mannosidases and, see Mannosidases, glycoprotein processing and mycology and, 775, 785, 788, 797 posttranslational modification and, 163, 180-183, 188 secretory vesicles and, 527, 531, 536 traffic, carbohydrate and, see Carbohydrate, glycoprotein traffic and translocation and, 20, 21, 25 viral, see Viral glycoproteins, membrane insertion and Glycosaminoglycans, Golgi membranes and, 290, 291 Glycosidases carbohydrate and inhibitors, 76, 79, 80 mutations, 70 oligosaccharide biosynthesis, 60 Dictyostelium and, 377, 381 lysosomal enzymes and, 470, 493 mannosidases and, 226 Glycosphingolipids, Golgi membranes and, 290-292, 297 Glycosylation carbohydrate and, 52, 89 inhibitors, 79 mutations, 66-70 oligosaccharide biosynthesis, 56, 58, 59, 61 site-directed mutagenesis, 65, 66 solubility, 62-65 tunicamycin, 71-76 Dictyostelium and, 367-369, 380, 382, 386, 390 endocytosis and, 403-405, 413 endoplasmic reticulum proteins and, 247, 248, 276, 277 exocytosis and, 433, 435, 437, 440 extracellular matrixlike glycoproteins and, 572, 579 Golgi membranes and, 289-291, 293, 298, 302, 305 lysosomal enzymes and, 471, 475, 488, 490, 492, 494, 499 lysosomelike vacuole in yeast and biosynthesis, 320-326, 328

sorting, 332, 344 mannosidases and, 209, 219-221 mycology and, 797 enzymes, 774-778, 780, 781, 785-790 Saccharomyces cerevisiae, 793 posttranslational modification and, 160, 163, 198 endoplasmic reticulum, 167-169, 176, 180-182 Golgi apparatus, 187-191, 193 viral glycoproteins and features, 111 genetic approach, 117, 118 probes, 112, 114 signal peptide region, 122, 123, 125, 127-129 transmembrane anchor domain, 138-140 Glycosyltransferase carbohydrate and, 57, 60 Golgi membranes and, 291, 293, 298, 299, 309 mannosidases and, 233 Golgi apparatus carbohydrate and, 89, 90 inhibitors, 76-81 intracellular transport signals, 52, 54, 55 lectins, 82, 83, 86-88 mutations, 67, 70 oligosaccharide biosynthesis, 57-59 site-directed mutagenesis, 65, 66 tunicamycin, 71, 74 Dictyostelium and, 364, 388, 390 life history, 369-372, 374 secretion, 378-380 endocytosis and, 404, 407, 409, 411, 413, 414, 429 biochemical characterization, 414, 416, 419, 424, 425, 427, 428 endoplasmic reticulum proteins and, 245-247 ERp99, 257, 258, 261, 262 signals, 248, 252 exocytosis and, 432, 434-440, 442-444, 447 lysosomal enzymes and, 470, 483 intracellular pathway, 492-494, 496, 497, 500, 503 junction of pathways, 506, 507 lysosomelike vacuole in yeast and, 353 biosynthesis, 322-324

endocytosis, 346, 350, 352 sorting, 330-332, 341, 343 mannosidase I and, 222-224 mannosidase II and, 227, 228, 230-232 mannosidases and, 211, 212 endoplasmic reticulum, 214, 217, 218, 220, 221 membranes, functional topology of, see Golgi membranes, functional topology of mycology and, 781, 787, 790 posttranslational modification and, 161, 183, 184, 198 endoplasmic reticulum, 168, 170, 171, 175, 179, 181, 182 oligosaccharides, 184-188 proteolysis, 191-197 sorting, 188-191 secretory vesicles and, 555 formation, 533, 539, 542-545, 549-552 structure, 524, 525, 528, 529 translocation and, 4 viral glycoproteins and, 147 cytoplasmic domain, 132-134 genetic approach, 117, 120, 121 polarized cells, 144 probes, 112, 114, 115 signal peptide region, 122, 125, 130, 132 transmembrane anchor domain, 139, 140, 142 Golgi membranes, functional topology of, 289, 290, 311, 312 methods catalysis, 294, 295 cytochemistry, 293, 294 enzymatic digestion, 295 orientation enzymes, 298, 299 function, 299, 300 lipids, 295-298 properties characterization, 292, 293 function, 290-292 polarity, 293 structure, 290 transport disaccharides, 302, 304 measuring, 300, 301 monosaccharides, 302, 303 nucleotides, 304-309 permeability, 301, 302 sugar uptake, 309-311

Gram negative bacteria, see Secretion, gram negative bacteria and
Growth factors endocytosis and, 403, 404 extracellular matrixlike glycoproteins and, 564
Growth hormone endoplasmic reticulum proteins and, 245, 246 exocytosis and, 436, 437, 443 secretory vesicles and, 527, 538, 545

H

Haptoglobin, carbohydrate and, 73 Hemagglutinin carbohydrate and, 65, 78, 81, 88 Dictyostelium and, 379 endoplasmic reticulum proteins and, 245 exocytosis and, 436, 443 secretion, gram negative bacteria and, 637 secretory vesicles and, 531, 539 viral glycoproteins and cytoplasmic domain, 133, 134 features, 111, 112 genetic approach, 118, 121 polarized cells, 144, 145 signal peptide region, 123, 125, 132 transmembrane anchor domain, 136, 142 Hematopoietic cells, extracellular matrixlike glycoproteins and, 563 Hemin, mitochondrial proteins and, 696 Hemolysin, secretion, gram negative bacteria and, 619, 620, 636, 637 later stages, 623, 626, 627, 630, 632 α -Hemolysin, secretion, gram negative bacteria and early stages, 619, 620 later stages, 622, 626, 627, 630-632, 634 Hepatitis B surface antigen, translocation and, 31, 32 Hepatitis virus, carbohydrate and, 78 Hepatocytes Dictyostelium and, 371, 377 endocytosis and, 408 Golgi membranes and, 291, 300 lysosomal enzymes and, 506 endocytosis, 481, 482, 486 intracellular pathway, 490, 492, 496, 497, 499, 502

mannosidases and, 218, 224 secretory vesicles and, 527, 536 Hepatoma cells carbohydrate and inhibitors, 77-81 intracellular transport signals, 53-55 lectins, 87 mutations, 70 tunicamycin, 72, 74-76 exocytosis and, 440 mannosidases and, 215 Herpes simplex virus, viral glycoproteins and, 113 Heterogeneity carbohydrate and, 54, 61 Dictyostelium and, 378, 381, 382 Golgi membranes and, 293, 302 lysosomal enzymes and, 494 mannosidases and, 222, 230 posttranslational modification and, 163 endoplasmic reticulum, 176, 178, 183 Golgi apparatus, 185, 191 Hexasaccharides, carbohydrate and, 87 β -Hexosaminidase carbohydrate and, 78 Dictyostelium and, 367, 371-373, 389 lysosomal enzymes and intracellular pathway, 490, 491, 493, 494, 498, 500-502 receptors, 478 recognition marker, 465-469, 473 Hexose 6-phosphate dehydrogenase, endoplasmic reticulum proteins and, 247, 261 Hexoses, Dictyostelium and, 382 Histidine mitochondrial protein import and, 665, 670, 671 mitochondrial proteins and, 687 Homogeneity endocytosis and, 422 mannosidases and, 210, 212 endoplasmic reticulum, 214, 215 mannosidase I, 224, 225 mannosidase II, 230 translocation and, 10 Homogenization, Golgi membranes and, 292, 299 Homology carbohydrate and, 61 endocytosis and, 431

endoplasmic reticulum proteins and, 260, 272, 277, 279 extracellular matrixlike glycoproteins and, 569. 570 lipoproteins and, 590 lysosomal enzymes and, 464 lysosomelike vacuole in yeast and, 320. 328, 337, 345 mitochondrial protein import and, 671 mitochondrial proteins and, 704, 711, 715, 719. 727 precursor proteins, 680, 684 sequences, 686, 688, 694 mycology and, 775, 780, 785, 788 nuclear transport and, 752, 759, 762 secretion, gram negative bacteria and, 626, 628, 630 secretory vesicles and, 530 translocation and mechanism. 18 membrane assembly, 26, 33 targeting, 8, 11 viral glycoproteins and, 121, 127 Hormones carbohydrate and, 66, 81 Dictyostelium and, 370 endocytosis and, 403, 405, 408, 429 endoplasmic reticulum proteins and, 278 lysosomelike vacuole in yeast and, 348 mycology and, 776 posttranslational modification and, 191, 192 secretory vesicles and formation, 532, 538, 542, 543, 545 structure, 525, 527, 528, 530 viral glycoproteins and, 116 Horse radish peroxidase endocytosis and, 422, 424, 425, 428, 429, 446 lysosomal enzymes and, 506 Human chorionic gonadotropin, endocytosis and, 405, 406 Hybridization carbohydrate and, 61, 66, 76, 77 endoplasmic reticulum proteins and, 246, 264 exocytosis and, 436, 437, 443 lipoproteins and, 594, 595, 597, 600, 601 lysosomal enzymes and, 467, 473, 487, 493 lysosomelike vacuole in yeast and, 324-326, 340

mannosidases and, 211, 221, 228, 230, 233 mitochondrial protein import and, 656-658, 670, 671 mutation isolation, 659, 661, 663-668 mitochondrial proteins and, 684 mycology and, 793, 794 nuclear transport and, 755, 756, 759-763 secretion, gram negative bacteria and, 608, 609, 619, 631-634, 642 secretory vesicles and, 538, 542 translocation and, 20 viral glycoproteins and, 121, 125, 133, 136 Hybridoma cells, carbohydrate and, 78 Hydrogen, viral glycoproteins and, 139, 140 Hydrolysis Dictvostelium and, 386 endocytosis and, 427 Golgi membranes and, 301 lipoproteins and, 595 lysosomal enzymes and, 466, 467, 493, 494 lysosomelike vacuole in yeast and, 319 mannosidases and, 214-216 mitochondrial proteins and, 680, 700, 703 mycology and, 772, 775, 783, 784 posttranslational modification and, 167, 169 secretion, gram negative bacteria and, 636 secretory vesicles and, 530 translocation and, 38 mechanism, 17-19 membrane assembly, 22 Hydropathy, endoplasmic reticulum proteins and. 272 Hydrophilicity carbohydrate and, 62 endoplasmic reticulum proteins and, 277 Golgi membranes and, 302 mannosidases and, 231 secretory vesicles and, 547 viral glycoproteins and cytoplasmic domain, 134 features, 110-112 transmembrane anchor domain, 137 Hydrophobicity carbohydrate and, 62, 88 Dictyostelium and, 371 endocytosis and, 404 endoplasmic reticulum proteins and, 248, 252, 272, 276 exocytosis and, 433, 436, 437

Hydrophobicity (cont.) lipoproteins and, 593-595, 598 lysosomelike vacuole in yeast and, 320, 321. 345 mannosidases and, 231 mitochondrial protein import and, 658 mitochondrial proteins and, 680, 681, 689, 716, 717, 728 mycology and, 778, 785, 790, 792, 793 nuclear transport and, 754, 759 posttranslational modification and, 163-165, 167, 168, 170, 196 secretion, gram negative bacteria and, 611, 615, 618, 627, 630, 640 secretory vesicles and, 531, 547 translocation and, 7 membrane assembly, 27, 28, 30, 32, 33, 37 targeting, 8, 9 viral glycoproteins and, 147 cytoplasmic domain, 132, 134, 135 features, 111 genetic approach, 118, 119, 121 probes, 114 signal peptide region, 123, 126-128 transmembrane anchor domain, 135-143 β -Hydroxyleucine, translocation and, 11 Hydroxymethylglutaryl-coenzyme A reductase endoplasmic reticulum proteins and, 251-253, 261, 277 mannosidases and, 214, 218

I

 α -L-Iduronidase, lysosomal enzymes and, 466, 474, 476, 491, 502 Immunoelectron microscopy lysosomelike vacuole in yeast and, 318, 333, 339, 350 secretory vesicles and, 539 viral glycoproteins and, 119, 120 Immunofluorescence carbohydrate and, 65 exocytosis and, 434 lysosomelike vacuole in yeast and, 318 viral glycoproteins and, 130, 131, 137 Immunofluorescence microscopy, viral glycoproteins and, 115 Immunoglobulins carbohydrate and inhibitors, 78, 80

oligosaccharide biosynthesis, 59 tunicamycin, 71, 72, 74 endocytosis and, 408, 409, 424 endoplasmic reticulum proteins and, 245, 246, 252, 277 extracellular matrixlike glycoproteins and, 575, 576 lysosomal enzymes and, 504 mannosidases and, 217, 220, 225 nuclear transport and, 753 posttranslational modification and, 162 secretion, gram negative bacteria and, 628 translocation and, 4, 26, 35 Immunoprecipitation Dictyostelium and, 365-368, 384, 388 endocytosis and, 416 endoplasmic reticulum proteins and, 254, 256, 258, 262, 265 extracellular matrixlike glycoproteins and, 571 lysosomal enzymes and endocytosis, 482-484, 488 receptors, 477, 479 recognition marker, 467, 469, 471, 473 mannosidases and, 235 mycology and, 775 Inflammation, extracellular matrixlike glycoproteins and, 564, 565, 575, 578 Influenza virus carbohydrate and, 61, 65, 78, 81 Dictyostelium and, 379 endoplasmic reticulum proteins and, 245 exocytosis and, 436, 443 mannosidases and, 225 nuclear transport and, 759, 761 secretory vesicles and, 531 viral glycoproteins and cytoplasmic domain, 123, 134 endocytic pathway, 117 features, 111, 112 genetic approach, 118, 119, 121 polarized cells, 144 signal peptide region, 123, 125 transmembrane anchor domain, 136, 141 Inhibitors Dictyostelium and, 374, 375 endocytosis and, 410-412 exocytosis and, 439, 440 lysosomal enzymes and, 499, 500 secretion, gram negative bacteria and, 638

Inositol triphosphate, secretory vesicles and, 530 Insulin carbohydrate and, 73, 81 Dictyostelium and, 375 endocytosis and, 405, 407, 425, 431 secretory vesicles and, 527, 528, 538, 542, 545, 552 Integral membrane proteins endoplasmic reticulum proteins and, 243 lysosomelike vacuole in yeast and, 344, 345 Integral transmembrane proteins, translocation and membrane assembly, 22-25, 37 polytopic, 30-34 stop transfer sequences, 25-29 topogenic sequences, 34-37 Integrin, extracellular matrixlike glycoproteins and, 568, 570 Interferon carbohydrate and, 63 extracellular matrixlike glycoproteins and, 564. 565 biosynthesis, 567-569, 571, 572 functions, 577, 578 mycology and, 789, 792, 793 Interleukin-2 carbohydrate and, 63 extracellular matrixlike glycoproteins and, 578 Intracellular transport signals, carbohydrate and, 52-55 Invertase Dictyostelium and, 379 exocytosis and, 440, 443 lysosomelike vacuole in yeast and, 347 biosynthesis, 319, 321, 322, 324, 325 sorting, 332, 333, 335-337, 339-341 mannosidases and, 219 mycology and enzymes, 779-781, 788-790 Saccharomyces cerevisiae, 792, 793, 795 posttranslational modification and, 162 endoplasmic reticulum, 164, 167-170, 176, 178, 180, 181 Golgi apparatus, 183, 185, 187, 189, 190 Ionophores endocytosis and, 411 exocytosis and, 439

Iron endocytosis and, 403, 413 lysosomal enzymes and, 487, 489 mitochondrial proteins and, 703 Isoleucine *Dictyostelium* and, 379 exocytosis and, 436 viral glycoproteins and, 127

K

Kidney
Dictyostelium and, 377, 378, 380
Golgi membranes and, 292, 293
lysosomal enzymes and, 492, 499
Killer toxin, posttranslational modification and, 191–197
Kinensin, secretory vesicles and, 528

L

 β -Lactamase, translocation and, 15, 17 Lactases, mycology and, 788, 789 Lactate, mitochondrial protein import and, 669 Lactogen, translocation and, 17 Lactose carbohydrate and, 88 Golgi membranes and, 300, 302 Laminin, extracellular matrixlike glycoproteins and, 564, 565, 579, 580 biosynthesis, 568, 579-573 functions, 575-578 Lecithin, Golgi membranes and, 292 Lectins carbohydrate and, 52, 81-89 intracellular transport signals, 54 mutations, 67, 68 Golgi membranes and, 295 lysosomal enzymes and, 493 posttranslational modification and, 176 Leucine lysosomelike vacuole in yeast and, 338, 339 translocation and, 11 viral glycoproteins and signal peptide region, 125, 127, 129 transmembrane anchor domain, 137, 138 Leukemia cells, carbohydrate and, 74

Leukocytes extracellular matrixlike glycoproteins and, 564-566, 576, 577, 579, 580 mycology and, 792 Leukodystrophy, Dictyostelium and, 372 Leupeptin carbohydrate and, 74 Dictyostelium and, 373, 374 Ligands carbohydrate and, 74, 82, 87 Dict vostelium and, 370, 380 endocytosis and, 403-405, 407-412, 414 biochemical characterization, 418-422, 425, 428, 431 lysosomal enzymes and, 465, 475-477, 495 endocytosis, 481, 484-486, 489 lysosomelike vacuole in yeast and, 349 mannosidases and, 230 secretory vesicles and, 530, 543 viral glycoproteins and, 116 Ligatin, carbohydrate and, 88, 89 Lipases, mycology and, 790, 791 Lipids carbohydrate and inhibitors, 79 mutations, 67, 68 oligosaccharide biosynthesis, 56, 59 tunicamýcin, 71, 73 Dictyostelium and, 364 endocytosis and, 406, 411 exocytosis and, 442 Golgi membranes and, 290-293, 295-299 lipoproteins and, 588, 590 lysosomal enzymes and, 467, 473 mannosidases and, 209, 216 mitochondrial proteins and, 687, 696, 707 mycology and, 790, 791 posttranslational modification and, 163 endoplasmic reticulum, 164, 171, 172, 174, 175, 178, 179 Golgi apparatus, 185 secretion, gram negative bacteria and, 611, 627, 633, 635, 641 secretory vesicles and, 531, 545, 547-550 translocation and, 4, 5 mechanism, 14, 15 membrane assembly, 22, 25-28, 30, 31, 34 viral glycoproteins and cytoplasmic domain, 135 features, 110

polarized cells, 114 transmembrane anchor domain, 135, 139 Lipopolysaccharides, secretion, gram negative bacteria and, 634, 635, 640 Lipoproteins, 587, 588, 601 in bacteria, 590, 592 biosynthesis, 589-591 carbohydrate and, 55 endocytosis and, 402 Isp gene, 596, 597 mutation, 598-600 secretion, 600, 601 secretion, gram negative bacteria and, 612, 619, 624 signal peptidases, 592-595 structure, 588, 589 viral glycoproteins and, 116 Liver endocytosis and, 409, 419 Golgi membranes and, 292, 293 methods, 294, 295 orientation, 296-299 transport, 301, 302, 305 lysosomal enzymes and endocytosis, 482, 486 intracellular pathway, 492, 493, 495, 496, 498 junction of pathways, 506 receptors, 477, 478, 480 recognition marker, 465, 467, 468, 470 mannosidases and, 211, 232 endoplasmic reticulum, 212, 214, 216, 220 mannosidase I, 223, 225, 226 mannosidase II, 227 mitochondrial proteins and, 681, 694, 704, 706, 709 posttranslational modification and, 172, 179 Localization carbohydrate and lectins, 83, 87, 89 oligosaccharide biosynthesis, 58 tunicamycin, 71, 75 Dictyostelium and, 364, 365, 389, 390 intracellular transport pathways, 381, 383, 384, 386, 387 life history, 369-372, 374, 375 secretion, 377, 378, 380 endocytosis and, 404, 409, 410, 425, 431 endoplasmic reticulum proteins and, 244,

245, 247, 274, 276, 278-280 cloning, 264 ERp99, 257, 258, 262 signals, 251-253 exocytosis and, 435, 444, 446 extracellular matrixlike glycoproteins and, 564 Golgi membranes and, 293, 294, 299 lipoproteins and, 587, 593, 594 lysosomal enzymes and, 470, 482, 492, 496, 497, 504 lysosomelike vacuole in yeast and, 318, 347, 352, 353 biosynthesis, 320, 324, 325, 328 sorting, 333-339, 344 mannosidases and, 210, 217, 233 mannosidase I, 222, 223 mannosidase II, 228, 230 mitochondrial protein import and, 656-658, 671 mutation isolation, 662-668 mitochondrial proteins and, 680, 689, 706, 707, 710, 713 mycology and, 787, 792 nuclear transport and, see Nuclear transport posttranslational modification and, 160, 170, 180, 182, 187-189 secretion, gram negative bacteria and, 620, 626, 627, 630, 632, 634 secretory vesicles and, 542, 543 translocation and, 3, 33, 37 viral glycoproteins and cytoplasmic domain, 132 genetic approach, 122 probes, 113 signal peptide region, 130 transmembrane anchor domain, 140 Low density lipoprotein carbohydrate and, 90 mutations, 68, 69 tunicamycin, 73, 74 endocytosis and, 402-406, 408, 413, 431 Lucifer yellow, lysosomelike vacuole in yeast and, 346, 347, 350 Lung carbohydrate and, 81 extracellular matrixlike glycoproteins and, 567 Golgi membranes and, 297 Lymphoblastoid cells, carbohydrate and, 76

Lymphoblasts, endoplasmic reticulum proteins and, 256 Lymphocytes endoplasmic reticulum proteins and, 256 extracellular matrixlike glycoproteins and, 565, 569, 574 mannosidases and, 230 Lymphoid cells, extracellular matrixlike glycoproteins and, 569 Lymphokines, extracellular matrixlike glycoproteins and, 564, 565, 575, 578 Lymphoma cells carbohydrate and inhibitors, 79 intracellular transport signals, 54 mutations, 66-68 oligosaccharide biosynthesis, 58 lysosomal enzymes and, 467 Lysine carbohydrate and, 70 lipoproteins and, 588 mycology and, 777, 778 nuclear transport and, 751, 753, 756 viral glycoproteins and, 137, 139, 140, 143 Lysis extracellular matrixlike glycoproteins and, 564, 565, 573, 577 Golgi membranes and, 300, 301 secretion, gram negative bacteria and, 608-610, 640, 641 early stages, 619 later stages, 623-625, 628, 629, 632 Lysolipids, secretion, gram negative bacteria and, 624, 625 Lysosomal enzymes, 464, 465 Dictyostelium and, see Dictyostelium, lysosomal enzymes in endocytosis disruption, 483-490 pathway, 481-483 intracellular pathway biosynthesis, 490, 491 disruption, 499-504 secretory, 491-499 junction of pathways components, 504-507 disruption, 507, 508 receptors binding-deficient cells, 478, 479 cation-dependent, 480, 481 cation-independent, 476-478

Lysosomal enzymes (cont.) recognition marker biosynthesis, 467-472 mannose 6-phosphate, 465-467 Lysosomal hydrolases endocytosis and, 406, 425 lvsosomal enzymes and, 464, 466, 478, 479, 503 secretory vesicles and, 536, 542 Lysosomelike vacuole in yeast, see Yeast, lysosomelike vacuole in Lysosomes carbohydrate and, 51, 90 inhibitors, 77, 78 lectins, 82, 83, 88, 89 mutations, 67, 68 oligosaccharide biosynthesis, 58, 60, 61 solubility, 65 tunicamycin, 71 endocytosis and, 403, 405-414, 431 biochemical characterization, 418, 424, 425, 427, 428 endoplasmic reticulum proteins and, 244, 248 Golgi membranes and, 290-292, 302 mannosidases and, 212, 214, 225, 227, 230, 232 posttranslational modification and, 181 secretory vesicles and, 533, 534, 536, 542, 545, 552 translocation and, 4 viral glycoproteins and, 116, 118, 138-140

Μ

 α -Macroglobulin, endocytosis and, 403, 406, 408, 425 α_2 -Macroglobulin carbohydrate and, 72, 79 mannosidases and, 230 Macrophages carbohydrate and, 75, 82, 83, 88 Dictyostelium and, 377-379 extracellular matrixlike glycoproteins and, see Extracellular matrixlike glycoproteins lysosomal enzymes and endocytosis, 483, 485 intracellular pathway, 490, 491, 501, 502 receptors, 479, 480 recognition marker, 471, 473

Madin-Darby canine kidney cells carbohydrate and, 75, 76 secretory vesicles and, 529 viral glycoproteins and, 117, 144 Magnesium lysosomal enzymes and, 476, 480 secretion, gram negative bacteria and, 625 Major histocompatibility antigens, carbohydrate and, 61 Major histocompatibility molecules, extracellular matrixlike glycoproteins and, 573, 577 Maltose lipoproteins and, 595 lysosomelike vacuole in yeast and, 321 mycology and, 774 Mammary gland, Golgi membranes and, 299, 300 Mannoprotein, posttranslational modification and, 184, 185 Mannose carbohydrate and inhibitors, 77-80 lectins, 82, 87, 88 mutations, 67, 68, 70 oligosaccharide biosynthesis, 55-57, 59-61 tunicamycin, 72, 74, 75 Dictyostelium and, 364, 369, 371, 382, 386 endoplasmic reticulum proteins and, 247, 260, 261 exocytosis and, 435, 437, 442, 444 Golgi membranes and, 291 lysosomal enzymes and, 479, 494, 507 recognition marker, 467, 468, 470, 472-476 lysosomelike vacuole in yeast and, 322, 331, 337 mannosidases and, 211, 233 endoplasmic reticulum, 215-218, 220, 221 mannosidase I, 222-225 mannosidase II, 226, 227, 230 mycology and, 775, 785 posttranslational modification and endoplasmic reticulum, 171, 172, 174-177, 179, 183 Golgi apparatus, 184-189 viral glycoproteins and, 112, 119 Mannose 6-phosphate

carbohydrate and, 51, 90 lectins, 82, 83, 86, 87, 89 mutations, 68, 69 oligosaccharide biosynthesis, 60, 61 solubility, 65 tunicamycin, 71 Dictvostelium and, 364, 369, 370, 375 endocytosis and, 407, 427 endoplasmic reticulum proteins and, 244 Golgi membranes and, 292, 294 lysosomal enzymes and endocytosis, 481-489 intracellular pathway, 491, 493-495, 497-504 junction of pathways, 505-508 receptors, 476-480 recognition marker, 466, 467, 470, 473-475 lysosomelike vacuole in yeast and, 331, 337, 341, 343 mannosidases and, 222 posttranslational modification and, 181 secretory vesicles and, 536, 542, 543 Mannose 6-sulfate, Dictyostelium and, 382, 388 Mannosidase I, glycoprotein processing and, 221-223 inhibitors, 225, 226 purification, 223-225 Mannosidase II, glycoprotein processing and biosynthesis, 230-232 inhibitors, 228-230 purification, 227, 228 Mannosidases Dictvostelium and, 371, 389 endocytosis and, 409 exocytosis and, 440 glycoprotein processing and, 233 asparagine-linked oligosaccharides, 209-212 endoplasmic reticulum, 212-218 oligosaccharide processing, 218-221 Golgi membranes and, 291, 293 lysosomal enzymes and, 492, 493 lysosomelike vacuole in yeast and, 327 posttranslational modification and, 176, 191 α-Mannosidases carbohydrate and inhibitors, 76, 78, 80, 81

intracellular transport signals, 54 oligosaccharide biosynthesis, 56, 59 Dictvostelium and intracellular transport pathways, 383-386 life history, 365, 367-369, 372-375 regulation, 387, 388 secretion, 376-380 endoplasmic reticulum proteins and, 248, 261 exocytosis and, 435 lysosomal enzymes and, 466, 474, 476, 479, 493, 497, 502 lysosomelike vacuole in yeast and, 319, 320, 336, 343 Mannosvl mannosidases and, 211, 212, 216, 221, 224, 227 posttranslational modification and, 179, 186 Mannosylphosphotransferase, lysosomelike vacuole in yeast and, 323, 331 Mannosyltransferases, posttranslational modification and, 179, 186, 191 Mast cells, Dictyostelium and, 377 Membrane assembly, translocation and, 22-25, 37 polytopic ITMPs, 30-34 stop transfer sequences, 25-29 topogenic sequences, 34-37 Membrane insertion, viral glycoproteins and, see Viral glycoproteins, membrane insertion and Methionine carbohydrate and, 53 Dictvostelium and, 372 endocytosis and, 422 endoplasmic reticulum proteins and, 259 extracellular matrixlike glycoproteins and, 571 lysosomal enzymes and, 479, 491 mitochondrial protein import and, 669 N-Methyldeoxynojirimycin, carbohydrate and, 76, 78 α -Methylmannoside, lysosomal enzymes and 468, 469 Methyl-p-nitrophenyltriazene, mannosidase and, 226 Microfilaments endocytosis and, 412 secretory vesicles and, 530

Microsomes carbohydrate and, 87, 88 Dictyostelium and, 367, 368 endoplasmic reticulum proteins and, 248, 258, 262, 277 lysosomal enzymes and, 467, 490 lysosomelike vacuole in yeast and, 321 mannosidases and, 215, 225, 232, 233 mitochondrial proteins and, 681 posttranslational modification and, 161, 162, 172 Microtubules endocytosis and, 412, 416, 419, 425, 429 secretory vesicles and, 528-530, 550 Mitochondria Dictyostelium and, 364, 389 endoplasmic reticulum proteins and, 244, 248 Golgi membranes and, 293, 295, 297, 306 lysosomelike vacuole in yeast and, 318, 338 mitochondrial protein import and, 657, 658, 669-672 mutation isolation, 659-663, 665-667, 679 nuclear transport and, 753 posttranslational modification and, 160 secretion, gram negative bacteria and, 620 secretory vesicles and, 533, 534 translocation and, 3, 5, 8 Mitochondrial protein import, 655, 669-672 biochemistry, 656 mutation isolation, 659 classical approaches, 660-662 molecular approaches, 662-669 signal sequences, 656-659, 671, 672 Mitochondrial proteins, 677, 678, 728, 729 assembly, 718-721 cytosolic cofactors, 703-705 energy requirements, 699-703 evolution, 726-728 gene products, 716-718 import pathway models, 721-725 precursor proteins properties, 678-682 transport, 682-684 proteolysis, 709-716 receptors, 695-699 sequences, 684 fusion, 685-688

heterologous import, 694, 695 prepiece, 688-692 stop transport model, 692-694 translocation, 705-709 Mitosis, nuclear transport and, 754 Monensin Dictyostelium and, 375 endocytosis and, 412 exocytosis and, 439 Golgi membranes and, 297, 302 lysosomal enzymes and, 504 Monoclonal antibodies Dictyostelium and, 365, 369, 382, 389 endocytosis and, 411 extracellular matrixlike glycoproteins and, 569 secretory vesicles and, 552 Monocytes, extracellular matrixlike glycoproteins and, 564, 576 biosynthesis, 567, 569, 570, 572, 574 Morphology carbohydrate and, 88 Dictyostelium and, 371, 387 endocytosis and, 412, 414, 418, 422, 424, 425, 427-429 exocytosis and, 434, 435, 441-444 Golgi membranes and, 293 lysosomal enzymes and, 500 lysosomelike vacuole in yeast and, 339, 347, 349 mitochondrial proteins and, 707 secretory vesicles and, 521, 525, 529 Mouse mammary tumor virus, carbohydrate and, 74 mRNA Dictyostelium and, 367, 368, 387 endoplasmic reticulum proteins and, 260, 262, 264-269, 274 extracellular matrixlike glycoproteins and, 571 lipoproteins and, 597 lysosomal enzymes and, 490 mitochondrial protein import and, 664 mitochondrial proteins and, 683, 684, 687, 719 mycology and, 775, 780, 789 posttranslational modification and, 167, 193 translocation and, 4, 17 viral glycoproteins and, 122

Mucin, carbohydrate and, 88 Mucolipidosis, lysosomal enzymes and, 468, 469, 471, 493 Mucopolysaccharides, lysosomal enzymes and, 464 Mucor miehei, mycology and, 782 Multivesicular bodies, lysosomal enzymes and, 506, 507 Mumps, carbohydrate and, 74 Murine leukemia virus carbohydrate and, 53, 55, 61 viral glycoproteins and, 144, 145 Mutagenesis carbohydrate and, 52, 65, 66 endocytosis and, 429, 431, 446 endoplasmic reticulum proteins and, 244, 280 exocytosis and, 435-437 lipoproteins and, 598 lysosomelike vacuole in yeast and, 333, 335 mitochondrial protein import and, 665, 667-669 mycology and, 781 posttranslational modification and, 186 secretory vesicles and, 542 viral glycoproteins and, 133 Mutation carbohydrate and, 52 glycosylation, 66-70 inhibitors, 79 intracellular transport signals, 54, 55 oligosaccharide biosynthesis, 58, 59 site-directed mutagenesis, 66 Dictyostelium and, 388-390 life history, 375, 379 secretion, 381-386 endocytosis and, 404, 405, 412-414, 431 endoplasmic reticulum proteins and, 246, 252, 254, 278, 279 exocytosis and, 436, 440, 441, 445 Golgi membranes and, 309 lipoproteins and, 588-590, 594-596, 598-601 lysosomal enzymes and, 464, 465, 478 endocytosis, 485-490 intracellular pathway, 501-504 junction of pathways, 505-508 recognition marker, 469, 473-475 lysosomelike vacuole in yeast and, 353

biosynthesis, 321, 325, 327, 330 endocytosis, 346, 348-350, 352 sorting, 330, 331, 333, 335-345 mannosidases and, 215, 217, 219 mitochondrial protein import and, 656, 657, 669-672 isolation, 659-669 mitochondrial proteins and, 689, 695, 697, 713, 719, 720 mycology and, 776, 781, 782, 787-790, 792 nuclear transport and, 764 mechanisms, 751, 752 yeast, 753, 755-757, 763 posttranslational modification and, 162, 163, 198 endoplasmic reticulum, 164, 166-171, 174-183 Golgi apparatus, 184, 185, 188, 189, 191, 194, 195, 197 outer chain bisynthesis, 185-187 secretion, gram negative bacteria and, 637, 640, 641 early stages, 618, 619 later stages, 620-623, 625, 628, 630, 631 secretory vesicles and, 527, 536 translocation and, 9 viral glycoproteins and, see Viral glycoproteins, membrane insertion and Mycology, secretion research and, 771, 772, 796, 797 enzymes amylases, 772-774 cellulases, 783-788 glucanases, 791 glucoamylases, 774-778 invertases, 789, 790 lactases, 788, 789 lipases, 790, 791 pectic, 791 prochymosin gene, 779-782 proteases, 778, 782, 783 Saccharomyces cerevisiae, 792-796 Myeloid cells, extracellular matrixlike glycoproteins and, 569 Myeloma cells Dictyostelium and, 375 endocytosis and, 409, 424 mannosidases and, 220

Natural killer cells, extracellular matrixlike glycoproteins and, 565, 568, 573, 574, 577, 578 Neuraminidase Dictyostelium and, 372 lysosomal enzymes and, 493, 507 mannosidases and, 226 viral glycoproteins and, 144 Neurites, extracellular matrixlike glycoproteins and, 571 Neuroblastoma cells, carbohydrate and, 74 Neurotoxin, carbohydrate and, 74 Neurotransmitters, secretory vesicles and, 525, 528, 530 Neutrophils Dictyostelium and, 377 extracellular matrixlike glycoproteins and, 576 Nigericin, mitochondrial proteins and, 700, 701 *p*-Nitrophenylmannoside, 214–216, 223, 227, 232 Nuclear envelope, exocytosis and, 442, 443 Nuclear magnetic resonance spectroscopy, mannosidases and, 220 Nuclear transport, 747, 764 mechanisms, 749-753 nuclear pore, 748, 749 in yeast, 753-755 $\alpha 2$ protein, 757–761 DNA binding, 762, 763 GAL4 gene, 755-757 ribosomal proteins, 761, 762 Nucleic acid, translocation and, 13 Nucleocapsids carbohydrate and, 74 viral glycoproteins and, 114, 115 Nucleoplasmin, nuclear transport and, 748-751, 760 Nucleoside triphosphates mitochondrial proteins and, 703, 710 translocation and, 38 mechanism, 17, 18 membrane assembly, 22 Nucleosides carbohydrate and, 70 exocytosis and, 439 Golgi membranes and

methods, 294 orientation, 298, 299 transport, 302, 303, 305, 307, 311 mitochondrial proteins and, 680 Nucleotides carbohydrate and, 56 endoplasmic reticulum proteins and, 265, 269, 274 exocytosis and, 439 Golgi membranes and, 291, 312 orientation, 298-300 transport, 301, 302, 305-311 lipoproteins and, 592, 597 mycology and, 774, 775, 778, 785, 789, 796 posttranslational modification and, 172, 179 translocation and, 10 viral glycoproteins and, 120-123

0

Ogitonin, carbohydrate and, 83 Oligomerization, Dictyostelium and, 380 Oligonucleotides lipoproteins and, 598 translocation and, 20 viral glycoproteins and, 130, 133, 137 Oligosaccharides carbohydrate and, 51, 90 biosynthesis, 55-62 inhibitors, 76, 77, 79-81 intracellular transport signals, 54 lectins, 82, 86-89 mutations, 67-70 site-directed mutagenesis, 65, 66 solubility, 62, 64 tunicamycin, 70, 73-75 Dictyostelium and, 364, 388, 390 intracellular transport pathways, 382, 386 life history, 369-371 secretion, 380 endoplasmic reticulum proteins and, 247, 265, 276 ERp99, 260-262, 264 signals, 248-251, 253 exocytosis and, 433, 437-442, 444 extracellular matrixlike glycoproteins and, 566, 571, 578

Golgi membranes and, 291, 293 lysosomal enzymes and intracellular pathway, 490, 492-495 receptors, 477, 478, 481 recognition marker, 466-468, 470-476 lysosomelike vacuole in yeast and, 322-325, 331, 344 mannosidases and asparagine-linked, 209-212 brain microsomal α -mannosidase, 232, 233 endoplasmic reticulum, 215-221 mannosidase I, 222, 224, 225 mannosidase II, 226-228, 230, 231 mycology and, 779-781, 784, 786, 788, 792 posttranslational modification and, 162, 163 endoplasmic reticulum, 168, 171-173, 175-181, 183 Golgi apparatus, 184-191 translocation and, 5, 20 viral glycoproteins and, 119, 120, 133, 137 Oligosaccharyltransferase, endoplasmic reticulum proteins and, 262, 264 Oncogenes, translocation and, 35 Opsin, carbohydrate and, 75 Opsonin, extracellular matrixlike glycoproteins and, 574-576, 578 Ornithine carbamoyltransferase, mitochondrial proteins and, 680, 711, 715, 716 cytosolic cofactors, 704, 705 sequences, 686, 688, 689 Ornithine transcarbamylase, mitochondrial protein import and, 667, 668 Orthomyxoviruses, viral glycoproteins and, 116, 144 Orthoviruses, viral glycoproteins and, 115 Osmosis Golgi membranes and, 300, 301 secretory vesicles and, 547 Osmotic shock Golgi membranes and, 292, 298, 299 mitochondrial proteins and, 707 secretion, gram negative bacteria and, 625 Ovalbumin carbohydrate and, 58, 59, 61, 73 mannosidases and, 221, 228 translocation and, 7, 10, 29 Ovomucoid, carbohydrate and, 58, 59

Р

Palmitate exocytosis and, 437, 438 mannosidases and, 231 posttranslational modification and, 182, 183 viral glycoproteins and, 138, 139 Palmitic acid exocytosis and, 433, 435 viral glycoproteins and, 120, 143 Pancreas carbohydrate and, 53, 63 Dictvostelium and, 367, 368, 374 lysosomal enzymes and, 497 mannosidases and, 220 mycology and, 774 posttranslational modification and, 161 secretory vesicles and, 527, 537, 543, 545 translocation and mechanism, 21 membrane assembly, 33 targeting, 10, 13 viral glycoproteins and, 128 Papain, endoplasmic reticulum proteins and, 262, 263, 277 Paramyxovirus, viral glycoproteins and, 115, 116, 144 Pectic enzymes, mycology and, 791 Penicillin, secretion, gram negative bacteria and, 632 Penicillinase lipoproteins and, 588-590, 592, 598, 600 secretion, gram negative bacteria and, 612, 613 viral glycoproteins and, 128 Pepsinogen, lysosomelike vacuole in yeast and, 329 Peptidase, see also Signal peptidase lysosomelike vacuole in yeast and, 338 mitochondrial proteins and, 678, 723, 725 energy requirements, 701, 702 sequences, 685, 694 translocation, 710, 711, 713, 715, 716 Peptides, see also Signal peptide carbohydrate and, 61, 73, 87, 89 exocytosis and, 435 extracellular matrixlike glycoproteins and, 569 lysosomal enzymes and, 470

mitochondrial proteins and, 679, 689, 695 mycology and, 775, 776, 786, 793, 796, nuclear transport and, 750, 752, 753, 755 posttranslational modification and 160-162 endoplasmic reticulum, 164, 168, 172, 176 Golgi apparatus, 192-195 secretion, gram negative bacteria and, 620, 630, 631, 639 secretory vesicles and, 525, 527, 528, 531, 532, 542, 543 translocation and, 4, 34 viral glycoproteins and features, 111 genetic approach, 122 probes, 112 signal peptide region, 123 transmembrane anchor domain, 135, 136, 141, 142 Periplasm lipoproteins and, 588, 593, 594, 600 lysosomelike vacuole in yeast and, 331, 336, 338 mitochondrial proteins and, 728 mycology and, 787, 789, 790, 792 posttranslational modification and, 186, 188, 191-197 secretion, gram negative bacteria and, 608, 635, 638 early stages, 611, 613-615 later stages, 620, 623, 624, 626, 633 Permeability Golgi membranes and, 301, 302 secretion, gram negative bacteria and, 625 Peroxisomes, endoplasmic reticulum proteins and, 248 pН carbohydrate and, 62 Dictyostelium and, 373, 374, 384 endocytosis and, 408, 412, 420, 421, 427 exocytosis and, 445 Golgi membranes and, 310 lysosomal enzymes and, 468, 505 endocytosis, 483, 485, 488, 489 intracellular pathway, 500, 504 receptors, 476, 477 lysosomelike vacuole in yeast and, 328, 329, 342, 344, 347

mannosidases and, 215, 227, 232 mitochondrial proteins and, 697, 700. 701. 709 mycology and, 778, 783, 788 secretory vesicles and, 527, 528, 531, 543, 551, 552, 554 translocation and, 21 viral glycoproteins and, 116, 117 Phagocytosis Dictyostelium and, 365, 388, 390 endocytosis and, 401 extracellular matrixlike glycoproteins and. 567. 574-576. 579 Phenothiazines, endocytosis and, 411 Phenotype carbohydrate and, 69 Dictvostelium and, 384 endocytosis and, 404, 405 exocytosis and, 433 extracellular matrixlike glycoproteins and. 564. 565 lysosomal enzymes and, 470, 471, 488 lysosomelike vacuole in yeast and, 349. 352, 353 biosynthesis, 327 sorting, 332, 340, 342, 343 mitochondrial protein import and, 659, 660, 663, 664, 666, 669, 670 nuclear transport and, 751, 759 posttranslational modification and, 163, 167, 195 viral glycoproteins and, 146 genetic approach, 121 signal peptide region, 127 transmembrane anchor domain, 140, 142 Phenylalanine, viral glycoproteins and, 121 Pheromone endocytosis and, 413 lysosomelike vacuole in yeast and, 344, 348, 349 mycology and, 793 posttranslational modification and, 191, 192, 196 Phosphatases, Golgi membranes and, 294, 298 Phosphates Dictyostelium and, 369, 371, 386, 387 Golgi membranes and, 294, 307 lysosomal enzymes and, 477, 480, 490 recognition marker, 465-467, 470-474, 476

lysosomelike vacuole in yeast and, 322, 323 mannosidases and, 216, 219, 231 posttranslational modification and, 167, 182, 184, 185, 187, 188 Phosphatidylcholine, Golgi membranes and, 296 Phosphatidylglycerol, Golgi membranes and, 298 3'-Phosphoadenosine 5'-phosphosulfate, Golgi membranes and, 299, 300, 306, 310. 311 Phosphodiesterase, lysosomal enzymes and, 470, 471, 473, 475, 492-494 Phospholipase Golgi membranes and, 295 secretion, gram negative bacteria and, 625, 626, 632, 635, 641 **Phospholipids** endocytosis and, 405 Golgi membranes and, 292, 295, 296 mannosidases and, 225 mitochondrial proteins and, 689 secretion, gram negative bacteria and, 620, 634, 636, 641 translocation and, 26 Phosphomannan lvsosomal enzymes and, 477, 478, 480, 481, 484 mannosidases and, 216 Phosphomannose endocytosis and, 407, 413 posttranslational modification and, 186 Phosphomannosyl Dictyostelium and, 364, 369, 370, 378, 380 endocytosis and, 407, 408 Phosphoprotein, endoplasmic reticulum proteins and, 278 Phosphoryl groups, posttranslational modification and, 181, 182, 186, 187 Phosphorylation carbohydrate and, 58, 60, 82, 88 Dictyostelium and, 364, 370, 375, 380, 388. 390 endocytosis and, 405, 410, 429-431 exocytosis and, 439, 444 lysosomal enzymes and, 476, 477 intracellular pathway, 490, 493-495, 501 recognition marker, 467, 469, 471-476

lysosomelike vacuole in yeast and, 322-326, 328, 331 mannosidases and, 217, 219 mitochondrial proteins and, 681 posttranslational modification and, 160, 181, 182, 186, 191 translocation and, 3 Phosphotransferase lysosomal enzymes and, 467-469 lysosomelike vacuole in yeast and, 337 Pinocytosis Dictyostelium and, 365, 390 endocytosis and, 401 lysosomal enzymes and, 465, 505 Pituitary carbohydrate and, 55, 73 endocytosis and, 422 exocytosis and, 445 lysosomal enzymes and, 497 secretory vesicles and, 524, 527, 537, 538, 545 Placenta, lysosomal enzymes and, 465, 470, 498 Plasma endoplasmic reticulum proteins and, 254 extracellular matrixlike glycoproteins and. 565, 566, 568, 576 lysosomal enzymes and, 471 secretory vesicles and, 523 Plasma membrane carbohydrate and, 52 inhibitors, 78 intracellular transport signals, 53-55 lectins, 83, 86 Dictyostelium and, 382, 388 endocytosis and, 402, 405, 408, 409, 411-414, 429 biochemical characterization, 414, 419, 422, 425, 429 endoplasmic reticulum proteins and, 245, 246, 278-280 ERp99, 256 signals, 248, 251, 252 exocytosis and, 440, 445 extracellular matrixlike glycoproteins and, 573, 578 Golgi membranes and, 290-292, 294 orientation, 297, 298 transport, 302, 305 lysosomal enzymes and, 476, 481, 483, 486, 506

Plasma membrane (cont.) lysosomelike vacuole in yeast and, 331, 346 posttranslational modification and, 170, 183, 190, 197 secretory vesicles and, 521 formation, 532, 533, 536, 537, 545, 549, 552 structure, 524, 525, 527, 529-531 translocation and, 4, 23 viral glycoproteins and cytoplasmic domain, 134, 135 endocytic pathway, 116 features, 110 genetic approach, 121 probes, 112, 114, 115 signal peptide region, 125 Plasmacytoma cells carbohydrate and, 72 endoplasmic reticulum proteins and, 247, 265, 277 ERp99, 253, 254, 256, 259 mannosidases and, 220 Plasmids carbohydrate and, 71 Dictyostelium and, 386 endoplasmic reticulum proteins and, 265 lipoproteins and, 592, 597 lysosomelike vacuole in yeast and, 332, 336 mitochondrial protein import and, 657, 666 mycology and, 774, 775, 777, 785-787, 791 posttranslational modification and, 188, 190, 193, 196 secretion, gram negative bacteria and, 627, 628, 638, 639 viral glycoproteins and, 127 Plasminogen, carbohydrate and, 72 Plasminogen activator, carbohydrate and, 63 Plasmolysis, secretion, gram negative bacteria and, 625 Platelets, secretory vesicles and, 532 Polarity carbohydrate and, 75, 76 Dictyostelium and, 389 exocytosis and, 444 Golgi membranes and, 290, 293 lysosomelike vacuole in yeast and, 345

mannosidases and, 209, 210 mitochondrial proteins and, 689 secretory vesicles and, 524, 528 Polarization, viral glycoproteins and, 115 Polarized cells endocytosis and, 409, 410 viral glycoproteins and, 144, 145, 147 Polyethylene glycol, carbohydrate and, 62 Polymerization, endocytosis and, 411 Polypeptides carbohydrate and mutations, 67, 69, 70 oligosaccharide biosynthesis, 55, 56, 61 site-directed mutagenesis, 66 solubility, 64 tunicamycin, 73-75 Dictyostelium and, 383, 386, 389 life history, 365-375 secretion, 376, 380 endocytosis and, 416, 420, 422, 425 endoplasmic reticulum proteins and, 248, 272 exocytosis and, 436, 437, 442, 443, 445 extracellular matrixlike glycoproteins and, 569, 570 Golgi membranes and, 291 lysosomal enzymes and, 478 lysosomelike vacuole in yeast and, 348 biosynthesis, 319-321, 325-327 sorting, 333, 336, 337, 340 mannosidases and, 209, 230, 231 endoplasmic reticulum, 214, 217-221 mitochondrial protein import and, 655, 658, 670, 671 mitochondrial proteins and, 682-685, 701, 703, 706 mycology and, 775, 779, 783, 792-796 posttranslational modification and. 161-164 secretion, gram negative bacteria and, 609, 637-639 early stages, 611-613, 615, 619, 620 later stages, 623, 626, 629-634 secretory vesicles and, 542, 545 translocation and, 4, 5, 7, 38 mechanism, 17, 19-21 membrane assembly, 22, 25-28, 30, 33, 35, 37 targeting, 8, 10-12 viral glycoproteins and, 146, 147 cytoplasmic domain, 133-135

features, 109-111 genetic approach, 117-120 polarized cells, 144 probes, 112-115 signal peptide region, 122, 125, 127, 129 transmembrane anchor domain. 135-137, 139, 140, 142, 143 Polysaccharides, mycology and, 772, 774 Polysomes, translocation and, 4, 5, 38 mechanism, 20 membrane assembly, 22 targeting, 10, 12 Porin, mitochondrial proteins and, 683, 701, 721 receptors, 696-699 Posttranslational modification Dictvostelium and, 369-371, 388, 389 exocytosis and, 435, 437 extracellular matrixlike glycoproteins and, 572, 579 lysosomal enzymes and, 477 mitochondrial proteins and, 719 Posttranslational modification, protein secretion and, 159, 160, 198 asparagine-linked carbohydrates, 171-175 asparagine-linked oligosaccharides, 175 - 178core oligosaccharides, 180, 181 cytoplasm endoplasmic reticulum, 160-162 yeast mutation, 162, 163 fatty acid, 182, 183 Golgi apparatus, 183, 184 oligosaccharides, 184-188 proteolysis, 191-197 sorting, 188-191 mutation, 170, 171 O-linked oligosaccharides, 178, 179 phosphoryl groups, 181, 182 signal sequence cleavage, 163-170 Potassium endocytosis and, 410, 411 mitochondrial proteins and, 701 Precursor protein, mitochondrial proteins and, 678-684 Preprolactin, translocation and, 15 Preproteins endoplasmic reticulum proteins and, 244 posttranslational modification and, '160 Preprotoxin, lysosomelike vacuole in yeast and, 321

Primaguine, lysosomal enzymes and, 484, 499 Prochymosin, mycology and, 779-782 Procollagen, carbohydrate and, 73 Proinsulin Dictvostelium and, 374 secretory vesicles and, 527, 539 Prokarvotes, translocation and, 9 Prolactin endocytosis and, 405, 407, 425 secretory vesicles and, 543 translocation and, 15 Proline carbohydrate and, 56 mitochondrial protein import and, 667 nuclear transport and, 759, 762 viral glycoproteins and, 129 Prolipoprotein, 588-590, 592, 594, 598-600 viral glycoproteins and, 128 Prolyl hydroxylase, endoplasmic reticulum proteins and, 248, 251, 252, 261 Pronase, mannosidases and, 231 Proopiomelanocortin, carbohydrate and, 73 Propeptides, lysosomelike vacuole in yeast and, 321, 322, 327, 333, 336, 337 Proteases carbohydrate and, 52 mutations, 69, 70 solubility, 64, 65 tunicamycin, 74 Dictvostelium and, 373, 379 endocytosis and, 403 endoplasmic reticulum proteins and, 277 extracellular matrixlike glycoproteins and, 564 lipoproteins and, 595 lysosomal enzymes and, 490, 497 lysosomelike vacuole in yeast and, 318, 327-329, 348 mannosidases and, 214, 215, 224, 231 mitochondrial protein import and, 656, 660, 662, 665, 668-670 mitochondrial proteins and, 683, 718, 721, 725, 729 energy requirements, 702 proteolysis, 709-711, 713, 715 receptors, 695, 696 translocation, 706 mycology and, 778-783, 787, 791 posttranslational modification and, 182, 189, 191, 194-198

Proteases (cont.) secretion, gram negative bacteria and, 627, 628, 637, 638 translocation and, 5, 20, 21 Protein kinase C endocytosis and, 429 secretory vesicles and, 532 Protein kinases, endocytosis and, 404 Proteinase K, mannosidases and, 231 Proteinases Dictyostelium and, 371, 372, 374 lysosomelike vacuole in yeast and biosynthesis, 319-321, 324, 326-328, 330 sorting, 332, 333, 337, 339, 340, 344, 345 mycology and, 782 posttranslational modification and, 175, 188-190, 196 Proteoglycans exocytosis and, 445 extracellular matrixlike glycoproteins and, 573, 574, 580 Golgi membranes and, 302 Proteolysis carbohydrate and, 52 inhibitors, 77, 78, 81 oligosaccharide biosynthesis, 60 site-directed mutagenesis, 65 solubility, 65 tunicamycin, 73, 74 Dictyostelium and, 388, 390 life history, 365, 371-374 secretion, 378, 380 endocytosis and, 407 endoplasmic reticulum proteins and, 262 extracellular matrixlike glycoproteins and, 566 Golgi membranes and, 295 lipoproteins and, 593 lysosomal enzymes and, 491, 499, 501 lysosomelike vacuole in yeast and, 322, 326-330, 344 mannosidases and, 214, 226, 231 mitochondrial protein import and, 656, 667 mitochondrial proteins and, 678, 709-716, 723, 729 assembly, 719 cytosolic cofactors, 705 energy requirements, 700-703

precursor proteins, 679, 681 sequences, 685, 687, 689, 693 translocation, 706 mycology and, 775, 778, 782, 783, 785, 788 nuclear transport and, 750 posttranslational modification and, 160, 169, 191-197 secretion, gram negative bacteria and, 612, 613, 627, 628, 634, 637 secretory vesicles and, 542 translocation and, 20 viral glycoproteins and, 122 Pseudomonas lysosomal enzymes and, 486, 488 secretion, gram negative bacteria and, 632, 639 Pullulanase, secretion, gram negative bacteria and, 623, 626, 627, 632-636 Purification, translocation and, 4 mechanism, 21 targeting, 10-12 Puromycin mitochondrial proteins and, 682 translocation and, 5, 21 Pyruvate kinase, nuclear transport and, 752

R

Radioactivity Dictyostelium and, 365, 369 endoplasmic reticulum proteins and, 254 Golgi membranes and, 296, 300, 301 lysosomal enzymes and, 484, 489 intracellular pathway, 494, 495, 499, 504 recognition marker, 471, 474, 475 Receptor-mediated endocytosis, 402, 405-410 biochemical characterization, 414, 416, 418 Dictyostelium and, 378 lysosomelike vacuole in yeast and, 348, 349 mutation, 412, 413 Retina, carbohydrate and, 75, 88, 89 Retinal rod outer segment membranes, carbohydrate and, 75 Retinol, Dictyostelium and, 379 Retrovirus, viral glycoproteins and cytoplasmic domain, 133, 135

features, 110 polarized cells, 144 probes, 115 Rhabdovirus, viral glycoproteins and, 115, 116. 144 Rhizopus, mycology and, 772, 776-778, 790 Ribonucleases carbohydrate and, 62, 63 lysosomelike vacuole in yeast and, 326 mannosidases and, 220 Ribophorins endoplasmic reticulum proteins and, 247, 251, 253, 261 exocytosis and, 442 mannosidases and, 217 translocation and, 20, 21 Ribosomes carbohydrate and, 52 exocytosis and, 442 Golgi membranes and, 295 lysosomelike vacuole in yeast and, 346 mitochondrial proteins and, 682, 684, 716, 717, 725 nuclear transport and, 748, 761, 762 posttranslational modification and, 161, 180 secretory vesicles and, 533, 536 translocation and, 4, 38 mechanism, 17-20, 22 membrane assembly, 36, 37 receptor, 20, 21 targeting, 11-13 Ricin lysosomal enzymes and, 478, 486, 487 mannosidases and, 224, 227 RNA endoplasmic reticulum proteins and, 265, 279 exocvtosis and, 432 lysosomelike vacuole in yeast and, 322 mitochondrial proteins and, 684, 704, 705, 716 mycology and, 776 nuclear transport and, 748, 755, 762 posttranslational modification and, 161, 193 translocation and, 10-12 viral glycoproteins and, 110, 114, 144 RNase, carbohydrate and, 63 Rotavirus endoplasmic reticulum proteins and, 251, 252, 261, 274

mannosidases and, 217, 218 viral glycoproteins and, 114, 140, 143, 146 Rough endoplasmic reticulum carbohydrate and, 89, 90 inhibitors, 76-80 intracellular transport signals, 52-54 lectins, 82, 87 mutations, 70 oligosaccharide biosynthesis, 56-58, 60 solubility, 62 tunicamycin, 71-75 endocytosis and, 432-436, 439, 441-443 endoplasmic reticulum proteins and, 253, 254, 257, 261, 262, 279 Golgi membranes and, 290, 291, 294, 295, 302, 305, 307 mannosidases and, 209-212 posttranslational modification and, 161-163 secretory vesicles and, 533, 539, 542 viral glycoproteins and cytoplasmic domain, 133, 134 features, 112 genetic approach, 117, 120 probes, 112-114 signal peptide region, 123, 125, 126, 128, 130 transmembrane anchor domain, 136, 137, 141-143 Rous sarcoma virus exocytosis and, 440, 441, 443 mannosidases and, 225 viral glycoproteins and cytoplasmic domain, 132, 133, 135 features, 110-112 genetic approach, 118, 122 probes, 112 signal peptide region, 122, 123, 125, 126, 129, 130 transmembrane anchor domain, 136, 137, 140, 142

S

Saccharomyces cerevisiae endoplasmic reticulum proteins and, 272, 277 mitochondrial protein import and, 655, 656, 663 mitochondrial proteins and, 719 mycology and, 772, 792-796 enzymes, 774-782, 785-790

Saccharomyces cerevisiae (cont.) nuclear transport and, 747, 753-755, 764 α2 protein, 757-761 DNA binding, 762, 763 GAL4 gene, 755-757 ribosomal proteins, 761, 762 posttranslational modification and, 179, 185 Saponin carbohydrate and, 86 lysosomal enzymes and, 494 mannosidases and, 231 Saxitoxin, carbohydrate and, 74 Secretion mycology and, see Mycology, secretion research and posttranslational modification and, see Posttranslational modification Secretion, gram negative bacteria and, 607, 608, 641, 642 activators, 636, 637 early stages, 611 signal peptide route, 611-618 signal sequences, 618-620 filamentous bacteriophages, 640, 641 inhibitors, 636, 638 later stages identification, 620-623 mode of action, 623-628 targeting signals, 628-634 lysis, 609, 610 membrane appendages, 638-640 vesicles, 628-634-636 Secretory vesicles, 521-524, 554, 555 formation, 532, 533 Golgi, 545-552 molecular sorting, 533-536 recycling, 552-555 sorting in storage cells, 536-545 structure, 524 composition, 527-532 types, 524-527 Sendai virus, viral glycoproteins and, 116 Sepharose carbohydrate and, 87 mannosidases and, 225 Serine carbohydrate and, 64, 69 Dictyostelium and, 370, 373, 374 endocytosis and, 429, 431 Golgi membranes and, 291

lipoproteins and, 599 lysosomal enzymes and, 477 mannosidases and, 231 mitochondrial proteins and, 710 mycology and, 775-777, 786 posttranslational modification and, 178, 179. 197 viral glycoproteins and, 121, 127 Serine proteases, secretion, gram negative bacteria and, 618, 628 Serotonin mannosidases and, 224 secretory vesicles and, 532 Sialic acid carbohydrate and oligosaccharide biosynthesis, 55, 57, 58, 61 solubility, 62 endocytosis and, 409 exocytosis and, 444 Golgi membranes and, 299, 307 mannosidases and, 210, 211 posttranslational modification and, 188 viral glycoproteins and, 120 Sialylation, Golgi membranes and, 294 Sialyltransferases carbohydrate and, 56 Dictyostelium and, 371 Golgi membranes and, 293, 298, 299 lysosomal enzymes and, 492, 493, 504 mannosidases and, 222 Signal peptidase endoplasmic reticulum proteins and, 248 lipoproteins and, 589, 590, 592-595, 600, 601 lysosomelike vacuole in yeast and, 322 mycology and, 776, 777, 792 posttranslational modification and, 160, 164, 165, 167-179, 198 secretion, gram negative bacteria and, 611, 640 secretory vesicles and, 542 translocation and, 5, 7 mechanism, 20-22 membrane assembly, 34 targeting, 9 Signal peptidase cleavage, viral glycoproteins and, 125-132 Signal peptide endoplasmic reticulum proteins and, 251, 262, 272, 276, 277

exocytosis and, 433, 435 lipoproteins and, 590, 592, 593, 598, 599, 601 mycology and, 774, 777, 785, 786, 789, 792 posttranslational modification and, 164 secretion, gram negative bacteria and, 640 early stages, 611-618 later stages, 621, 626, 630, 632, 633 secretory vesicles and, 536 Signal peptide cleavage, endoplasmic reticulum proteins and, 272 Signal peptide region, viral glycoproteins and, 122, 123, 146 deletion, 123-125 mutation, 126-132 Signal recognition particle Dictyostelium and, 367 endoplasmic reticulum proteins and, 252, 277 exocytosis and, 442 nuclear transport and, 749 posttranslational modification and, 161-163 secretory vesicles and, 536 translocation and, 10, 38 elongation arrest, 11, 12 mechanism, 19, 21 membrane assembly, 22, 29-31, 33-37 receptor, 12, 13 sequence, 11 structure, 10, 11 targeting, 13, 14 viral glycoproteins and, 117 Signal sequence mitochondrial protein import and, 656-659, 666-668, 670-672 mycology and enzymes, 774, 778, 780, 788, 790 Saccharomyces cerevisiae, 792, 793 translocation and, 8-10 Signal sequence cleavage lysosomelike vacuole in yeast and, 322, 335 posttranslational modification and, 163-170 Sindbis virus carbohydrate and, 78 exocytosis and, 441 lysosomal enzymes and, 487, 504 mannosidases and, 217, 219 posttranslational modification and, 180 Sodium channel, carbohydrate and, 74 Sodium dodecyl sulfate

carbohydrate and, 63 endoplasmic reticulum proteins and, 254, 256, 259, 262, 278 extracellular matrixlike glycoproteins and, 571, 572, 579 lysosomal enzymes and, 477, 479, 484 mannosidases and, 225 mitochondrial proteins and, 710 Sorting, endoplasmic reticulum proteins and, see Endoplasmic reticulum proteins, sorting of Spectrin, secretory vesicles and, 530 Spheroplasts lipoproteins and, 594 lysosomelike vacuole in yeast and, 346 Sphingolipids, Golgi membranes and, 297 Sphingomyelin, Golgi membranes and, 292, 297, 298 Spleen Dictyostelium and, 372 lysosomal enzymes and, 472 Starch, mycology and, 772, 774-777, 782 Steroids endoplasmic reticulum proteins and, 278 Golgi membranes and, 291 Stop transfer sequences, translocation and, 25, 26, 34-37 combination signal, 29, 31 hydrophobicity, 28 structure, 26-28 Stop transport region, mitochondrial proteins and, 692-694, 723 Streptomyces lysosuperificus, carbohydrate and, 70 Sucrose carbohydrate and, 77 Dictyostelium and, 372 endocytosis and, 422 endoplasmic reticulum proteins and, 247 257, 264 Golgi membranes and, 292, 297, 298, 302, 304, 305 lysosomal enzymes and, 492, 493, 506 lysosomelike vacuole in yeast and, 339 mycology and, 786 posttranslational modification and, 167 secretion, gram negative bacteria and, 625 Sugar carbohydrate and inhibitors, 76 lectins, 86-89

Sugar, carbohydrate and (cont.) mutations, 69 oligosaccharide biosynthesis, 56-58 solubility, 62 exocytosis and, 439, 442 Golgi membranes and, 291, 299, 300 transport, 301, 305-311 lysosomal enzymes and, 466, 467, 472, 480, 490 mannosidases and, 224, 226 mycology and, 772, 775, 783, 786, 797 posttranslational modification and, 172, 178, 179, 188 viral glycoproteins and, 130, 139 Sulfate Dictyostelium and, 371, 386, 388 lysosomal enzymes and, 464 Sulfatides, Golgi membranes and, 291 Sulfation Dictyostelium and, 369, 382, 386, 390 exocytosis and, 439, 445 extracellular matrixlike glycoproteins and, 572, 573 Golgi membranes and, 291, 294, 299, 302, 305 Sulfotransferase, Dictyostelium and, 370 Swainsonine carbohydrate and, 76, 81 exocytosis and, 440 mannosidases and, 215, 226, 227, 229-233

Т

T lymphocytes, carbohydrate and, 67 Targeting Dictyostelium and, 364, 365, 369, 374, 384, 387, 389 extracellular matrixlike glycoproteins and, 578 mitochondrial protein import and, 657, 667 mitochondrial proteins and, 725-727 precursor proteins, 682, 684 sequences, 685-689, 693, 695 nuclear transport and, 764 mechanisms, 751-753 yeast, 755, 756, 759, 762 posttranslational modification and, 160-162, 191 secretion, gram negative bacteria and, 611, 628-634, 638

secretory vesicles and, 530, 532 translocation and, 8, 13, 14 signal recognition particle, 10-13 signal sequences, 8-10 Temperature carbohydrate and, 62-64 endocytosis and, 410, 411, 413 exocytosis and, 434-437, 440, 441, 443 lipoproteins and, 594 lysosomal enzymes and, 486, 488-490, 503, 504, 507 lysosomelike vacuole in yeast and, 330, 343, 344, 346-348 mitochondrial protein import and, 660, 661, 664-666, 669 mitochondrial proteins and, 706, 713 mycology and, 783, 787 posttranslational modification and, 163, 170, 175, 180, 198 viral glycoproteins and, 115, 119-121 Tetrahymena, Dictyostelium and, 377 Tetrapeptides, carbohydrate and, 64 Thermodynamics, translocation and, 5, 7, 25 Thermotolerance, lysosomelike vacuole in yeast and, 339 Thiamin pyrophosphatase, Golgi membranes and, 294, 298 Thioglycolate broth, extracellular matrixlike glycoproteins and, 565, 567, 568, 571, 575. 577 Threonine carbohydrate and, 64, 69 Dictyostelium and, 378 endocytosis and, 429, 431 Golgi membranes and, 291 mycology and, 775-778, 786 nuclear transport and, 751, 753 posttranslational modification and, 178, 179 Thrombospondin, extracellular matrixlike glycoproteins and, 564, 570, 579, 580 Thy-1 antigen, carbohydrate and, 54, 66, 69, 90 Thyroglobulin carbohydrate and, 73, 81 lysosomal enzymes and, 467, 468 mannosidases and, 217 Thyroid carbohydrate and, 60, 81 mannosidases and, 217

Thyroxine-binding globulin, carbohydrate and, 72 Togaviruses, viral glycoproteins and, 116 Tosyl-L-phenylalanylchloromethyl ketone. posttranslational modification and, 194, 196 Transcription mitochondrial protein import and, 666, 670 mitochondrial proteins and, 687, 718, 719 mycology and, 775, 779, 780 nuclear transport and, 755, 758, 762, 763 Transcytosis endocytosis and, 408-410 secretory vesicles and, 526 Transferrin carbohydrate and inhibitors, 77, 79 intracellular transport signals, 53, 55 tunicamycin, 72, 74 endocytosis and, 403, 405, 408, 409, 413, 446 biochemical characterization, 418, 420, 425, 427-429, 431 lysosomal enzymes and, 487-489, 507 mannosidases and, 230 secretory vesicles and, 527, 536 Trans-Golgi reticulum, secretory vesicles and. 542 Translation Dictvostelium and, 368 lysosomelike vacuole in yeast and, 344 mitochondrial protein import and, 659, 670 mycology and, 775 posttranslational modification and, 161, 162. 165 translocation and, 4, 38 mechanism, 14, 15, 17-19 targeting, 10, 11, 13 viral glycoproteins and, 146 Translocation carbohydrate and, 73, 77 Dict yostelium and, 367, 369, 371 endocytosis and, 409 endoplasmic reticulum proteins and, 248, 279 exocytosis and, 433, 435, 442 lipoproteins and, 593 lysosomelike vacuole in yeast and, 320-322, 337, 353

mannosidases and, 217 mitochondrial protein import and, 665, 666 mitochondrial proteins and, 678, 684, 705-709, 717-719, 723, 725, 726 cvtosolic cofactors, 703, 704 energy requirements, 699, 701-703 precursor proteins, 682 receptors, 696 sequences, 687 nuclear transport and, 749, 756 posttranslational modification and, 160, 162, 163, 172, 174, 188 secretion, gram negative bacteria and. 607, 611, 619, 638, 642 later stages, 620, 626, 628, 630, 631 secretory vesicles and, 542 viral glycoproteins and, 145, 146 probes, 112 signal peptide region, 123, 125, 127, 128, 130 transmembrane anchor domain. 136-143 Translocation. ER membrane and, 3-8, 37, 38 mechanism, 14 altered substrates, 15-19 components, 19-22 membrane assembly, 22-25, 37 polytropic ITMPs, 30-34 stop transfer sequences, 25-29 topogenic sequences, 34-37 targeting, 8, 13, 14 signal recognition particle, 10-13 signal sequences, 8-10 Transposon, secretion, gram negative bacteria and, 631 Transreticular Golgi, endocytosis and, 406 Trehalase, lysosomelike vacuole in yeast and, 326 Trichoderma, mycology and, 784-789 Trypanosoma cruzi, carbohydrate and, 59, 79 Trypsin carbohydrate and, 86 Dictyostelium and, 368, 373 endoplasmic reticulum proteins and, 262, 263, 277 Golgi membranes and, 297, 298 lipoproteins and, 594 mannosidases and, 231

Trypsin (cont.) mitochondrial proteins and, 697, 699, 704. 707 Tryptophan, endocytosis and, 405 Tubulin endocytosis and, 416 lysosomelike vacuole in yeast and, 318 Tumors carbohydrate and, 55 endoplasmic reticulum proteins and, 262 extracellular matrixlike glycoproteins and, 565, 569, 577, 578 biosynthesis, 570, 572-574 mannosidases and, 230 secretory vesicles and, 538 Tunicamycin carbohydrate and, 52, 70-76, 90 inhibitors, 76, 78, 79 solubility, 63, 65 Dictyostelium and, 384 exocytosis and, 439 Golgi membranes and, 299, 307, 308 lysosomal enzymes and, 497, 499 mycology and, 780, 788 posttranslational modification and, 174, 180, 182 viral glycoproteins and, 118, 123, 129, 144 Tyrosine carbohydrate and, 63 endocytosis and, 405, 429, 431 endoplasmic reticulum proteins and, 278 posttranslational modification and, 193 viral glycoproteins and, 139, 140 Tyrosine kinase, endocytosis and, 405, 431

U

Ubiquinone, Golgi membranes and, 293
Ubiquitin, endocytosis and, 404
Urea, translocation and, 21
Uridine, Golgi membranes and, 302, 303, 307, 308
Uridine diphosphate, Golgi membranes and, 299, 305
Uridine 5⁴monophosphate, Golgi membranes and, 299, 301
Urokinase, carbohydrate and, 63

v

Valinomycin, Golgi membranes and, 310 Vesicular stomatitis virus carbohydrate and

inhibitors, 78, 80 oligosaccharide biosynthesis, 61 site-directed mutagenesis, 65, 66 solubility, 63, 64 Dictyostelium and, 379 endoplasmic reticulum proteins and, 245, 246, 274, 280 exocytosis and, 432-438, 441, 444 lysosomal enzymes and, 497, 500 mannosidases and, 217, 225 posttranslational modification and, 180 secretory vesicles and, 527, 542 translocation and, 25 viral glycoproteins and cytoplasmic domain, 132, 134 features, 112 genetic approach, 118-121 polarized cells, 144 transmembrane anchor domain, 136, 137, 140, 142 Viral envelope glycoproteins, posttranslational modification and, 182 Viral glycoproteins, mannosidases and, 219 Viral glycoproteins, membrane insertion and, 145-147 cytoplasmic domain, 132-135 endocytic pathway, 116, 117 features, 109-112 genetic approach, 117-119 classic, 119-122 recombinant DNA, 122 polarized cells, 144, 145 probes, 112-115 signal peptide region, 122-132 transmembrane anchor domain, 135-143 Viroplasm, viral glycoproteins and, 114 Viruses carbohydrate and inhibitors, 53, 54 solubility, 63, 64 tunicamycin, 74 endocytosis and, 403, 412, 413, 420 exocytosis and, 432, 437, 440, 441 lysosomelike vacuole in yeast and, 347 viral glycoproteins and, 112, 135, 147

х

Xenopus mitochondrial proteins and, 717 nuclear transport and, 748, 750, 753, 760, 762 translocation and, 33

Y

Yeast carbohydrate and oligosaccharide biosynthesis, 59 solubility, 63, 65 tunicamycin, 71, 73, 75 Dictyostelium and, 364, 380, 381, 386 endocytosis and, 413, 414 endoplasmic reticulum proteins and, 260, 280 exocytosis and, 432, 440, 443, 445 lysosomal enzymes and, 477 mannosidases and, 214-216 mitochondrial protein import and, 660, 664, 668, 669 mitochondrial proteins and, 723, 728 assembly, 718-720 energy requirements, 700, 703 gene products, 716 precursor proteins, 682 proteolysis, 710, 711, 713 receptors, 696-699 sequences, 685-689, 694, 695 mycology and, 796 enzymes, 772, 774-783, 785-791 Saccharomyces cerevisiae, 792-795 nuclear transport and, 747, 753-755, 764 α2 protein, 757-761 DNA binding, 762, 763 GAL4 gene, 755-757 ribosomal proteins, 761, 762 posttranslational modification and, 160, 162, 163, 198

endoplasmic reticulum, 164, 167, 169, 170, 172, 174-77, 179-183 Golgi apparatus, 183-189, 195, 197 secretion, gram negative bacteria and, 634 secretory vesicles and, 527, 536, 544, 545 translocation and, 18, 19 viral glycoproteins and, 146 Yeast, lysosomelike vacuole in, 318, 319, 352, 353 biosynthesis, 319 endoplasmic reticulum, 320-322 glycosyl modifications, 322-326 phosphoryl modifications, 322-326 polypeptides, 319, 320 proteolytic activation, 326-330 endocytosis fluid phase, 346, 347 mating response, 349, 350 pathway coupling, 350-352 receptor-mediated, 348, 349 sorting gene requirement, 338-343 genetic analysis, 343-346 Golgi apparatus, 330-332 localization, 333-338 overproduction, 332, 333 Z

Zinc, mannosidases and, 232 Zymogen exocytosis and, 445 lysosomelike vacuole in yeast and, 319, 322, 327-330, 337 posttranslational modification and, 197

