4 research outputs found

    Defeasible Systems in Legal Reasoning: A Comparative Assessment

    Get PDF
    Different formalisms for defeasible reasoning have been used to represent legal knowledge and to reason with it. In this work, we provide an overview of the following logic-based approaches to defeasible reasoning: Defeasible Logic, Answer Set Programming, ABA+, ASPIC+, and DeLP. We compare features of these approaches from three perspectives: the logical model (knowledge representation), the method (computational mechanisms), and the technology (available software). On this basis, we identify and apply criteria for assessing their suitability for legal applications. We discuss the different approaches through a legal running example

    Argumentation and Defeasible Reasoning in the Law

    Get PDF
    Different formalisms for defeasible reasoning have been used to represent knowledge and reason in the legal field. In this work, we provide an overview of the following logic-based approaches to defeasible reasoning: defeasible logic, Answer Set Programming, ABA+, ASPIC+, and DeLP. We compare features of these approaches under three perspectives: the logical model (knowledge representation), the method (computational mechanisms), and the technology (available software resources). On top of that, two real examples in the legal domain are designed and implemented in ASPIC+ to showcase the benefit of an argumentation approach in real-world domains. The CrossJustice and Interlex projects are taken as a testbed, and experiments are conducted with the Arg2P technology

    Possible world semantics for defeasible deontic logic

    No full text
    Abstract. Defeasible Deontic Logic is a simple and computationally efficient approach for the representation of normative reasoning. Traditionally defeasible logics are defined proof theoretically based on the proof conditions for the logic. While several logic programming, operational and argumentation semantics have been provided for defeasible logics, possible world semantics for (modal) defeasible logics remained elusive. In this paper we address this issue.
    corecore