3 research outputs found

    Positivity-preserving nonstandard finite difference schemes for cross-diffusion equations in biosciences

    Get PDF
    We design nonstandard finite difference (NSFD) schemes which are unconditionally dynamically consistent with respect to the positivity property of solutions of cross-diffusion equations in biosciences. This settles a problem that was open for quite some time. The study is done in the setting of three concrete and highly relevant cross-diffusion systems regarding tumor growth, convective predator–prey pursuit and evasion model and reaction–diffusion–chemotaxis model. It is shown that NSFD schemes used for classical reaction–diffusion equations, such as the Fisher equation, for which the solutions enjoy the positivity property, are not appropriate for cross-diffusion systems. The reliable NSFD schemes are therefore obtained by considering a suitable implementation on the crossdiffusive term of Mickens’ rule of nonlocal approximation of nonlinear terms, apart from his rule of complex denominator function of discrete derivatives. We provide numerical experiments that support the theory as well as the power of the NSFD schemes over the standard ones. In the case of the cancer growth model, we demonstrate computationally that our NSFD schemes replicate the property of traveling wave solutions of developing shocks observed in Marchant et al. (2000).South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation : SARChI Chair in Mathematical Models and Methods in Bioengineering and Biosciences.http://www.elsevier.com/locate/camwa2015-11-30hb201

    Global existence of classical solutions and numerical simulations of a cancer invasion model

    Get PDF
    In this paper, we study a cancer invasion model both theoretically and numerically. The model is a nonstationary, nonlinear system of three coupled partial differential equations modeling the motion of cancer cells, degradation of the extracellular matrix, and certain enzymes. We first establish existence of global classical solutions in both two- and three-dimensional bounded domains, despite the lack of diffusion of the matrix-degrading enzymes and corresponding regularizing effects in the analytical treatment. Next, we give a weak formulation and apply finite differences in time and a Galerkin finite element scheme for spatial discretization. The overall algorithm is based on a fixed-point iteration scheme. Our theory and numerical developments are accompanied by some simulations in two and three spatial dimensions
    corecore