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Abstract

We design nonstandard finite difference (NSFD) schemes which are unconditionally dynamically con-
sistent with respect to the positivity property of solutions of cross-diffusion equations in biosciences.
This settles a problem that was open for quite some time. The study is done in the setting of three
concrete and highly relevant cross-diffusion systems regarding tumor growth, convective predator-prey
pursuit and evasion model and reaction-diffusion-chemotaxis model. It is shown that NSFD schemes
used for classical reaction-diffusion equations, such as the Fisher equation, for which the solutions enjoy
the positivity property, are not appropriate for cross-diffusion systems. The reliable NSFD schemes are
therefore obtained by considering a suitable implementation on the cross-diffusive term of Mickens’ rule
of nonlocal approximation of nonlinear terms, apart from his rule of complex denominator function of
discrete derivatives. We provide numerical experiments that support the theory as well as the power
of the NSFD schemes over the standard ones. In the case of the cancer growth model, we demonstrate
computationally that our NSFD schemes replicate the property of traveling wave solutions of developing
shocks observed in [14].
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1 Introduction

Diffusion equations have been extensively studied for the modeling of biological processes such as animal
dispersal, spread of diseases and biofilm growth. Often, the models are in the form of reaction-diffusion
and advection-reaction-diffusion equations [13, 18, 19, 23]. In contrast, the mathematical analysis for cross-
diffusion equations is a challenge which is largely undeveloped. A cross-diffusion system is characterized by
the fact that the diffusion matrix is not strictly diagonal and even not symmetric positive. Thus, in the
equation for one species, there is at least one diffusion-type term that involves another species. In Murray’s
mathematical biology book [18, 19], which is a good attempt to cover the many topics in biosciences,
some cross-diffusion equations of interest in applications have been identified. Furthermore, cross-diffusion
equations are at the core of modeling of several natural processes such as cancer growth [3, 9], population
dynamics via, for instance, Volterra-Lotka cross-diffusion systems [7, 12, 22] and chemotaxis [11].

From a theoretical point of view, cross-diffusion equations are challenging mainly because they are
strongly coupled nonlinear parabolic systems, which do not enjoy the maximum principle and thus de-
riving a priori estimates and proving the existence of positive solutions is not easy. Nevertheless, some
results on global and local existence of solutions as well as on their long-time behavior have been established
in [7, 12]. Equally, the design, for cross-diffusion equations, of reliable numerical methods that produce
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positive solutions has been an open problem for many years now [17]. The current paper deals precisely
with this outstanding problem in the following three settings: a model for cancer growth [14], a convective
predator-prey pursuit and evasion model [19] and the basic reaction-diffusion-chemotaxis model [19].

We use the nonstandard finite difference (NSFD) approach. In the first step, we use a boundedness and
positivity-preserving NSFD scheme that we introduced in [2] for classical diffusion equations, including the
Fisher equation. This scheme was constructed by coupling Mickens’ rules (of complex denominator functions
of discrete derivatives and nonlocal approximation of nonlinear terms) with a suitable functional relation
between the time and the space step sizes. Unfortunately, when applied to cross-diffusion equations, the
resulting NSFD schemes are not dynamically reliable. In the second step, we consider an alternative strategy,
which apart from Mickens’ rule on the denominator, consists in using a special nonlocal approximation of
the cross-diffusion terms with the step sizes varying independently from one another. We then obtain NSFD
schemes which are unconditionally dynamically consistent with respect to the positivity property of the
solutions of cross-diffusion equations.

Our results, which were announced in [5], are mostly elaborated for the cancer growth model because the
initial motivation of this paper was to provide positive NSFD solutions for this model. The rest of the paper
is organized as follows. In the next section, we present a cancer growth model and design several NSFD
schemes for it. Sections 3 and 4 deal with the convective predator-prey pursuit and evasion model and the
basic reaction-diffusion-chemotaxis model, respectively. Numerical experiments that support the reliability
of our NSFD schemes are provided in each section. The last section is devoted to concluding remarks.

2 A model of malignant invasion

In [18], it is stated that cross-diffusion does not arise in genuinely practical models. In this section, we add
to the few practical examples mentioned in this reference, a cross-diffusion model that governs solid tumor
growth. We consider a one-dimensional model of malignant invasion proposed in [14], where u = u(x, t),
c = c(x, t) and p = p(x, t) are concentrations of invasive cells, connective tissue and protease, respectively.
The model is presented in nondimensionalized form, with u scaled so that the carrying capacity is unit. In
the unlikely case when connective tissues are absent, the invasive cells grow in a logistic manner:

du

dt
= u(1− u). (1)

In particular, invasive cells have an invasive flux of u ∂c
∂x

into connective tissues, which leads to the reaction-
advection equation

∂u

∂t
= u(1− u)−

∂

∂x

(

u
∂c

∂x

)

. (2)

Connective tissues are dissolved by proteases in accordance with the mass action principle:

∂c

∂t
= −pc. (3)

The latter are produced by invasive cells upon contact with connective tissues, according to the law

∂p

∂t
= ǫ−1(uc− p), (4)

where the parameter ǫ > 0 supposed to be small reflects the fact that the units of protease are far smaller
than those of connective tissues and invading cells, and their dynamics are seen on a shorter time scale.

The dimensionless system (2)-(4) forms the so-called cross-diffusion equations because Eq (2) of invasive
cells has a diffusion-type term that involves another species, namely c, instead of the usual diffusion term
∂2u
∂x2 . Moreover, unlike classical diffusion equations, the presence of the negative sign in front of the cross-
diffusive term in Eq. (2) is typical of cross-diffusion systems in biosciences and this is one of the sources of
difficulties. Here, we focus on an initial value problem and thus complete the system with initial conditions

u(x, t) = u0(x), c(x, t) = c0(x) and p(x, t) = p0(x), (5)
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for x ∈ R and t > 0. The problem could be considered with appropriate boundary conditions [10].
By setting the right-hand side to be zero, it follows that the system (2)-(4) has three types of constant

steady-state solutions E = (u, c, p): the fully malignant equilibrium Em = (1, 0, 0); the normal healthy
equilibrium En = (0, c, 0), where c > 0 is any constant, and the trivial equilibrium Et = (0, 0, 0). By seeking
traveling wave solutions, it can be shown, similarly to the Fisher-KPP equation [13, 19], that the solutions
enjoy the property

u(x, t) ≥ 0, c(x, t) ≥ 0, p(x, t) ≥ 0, (6)

with c decreasing in time whenever the initial conditions are nonnegative: u0(x) ≥ 0, c0(x) ≥ 0 and p0(x) ≥ 0.
For existence of solutions for some cross-diffusion equations, we refer to [7, 12].

The main purpose of this paper is to design nonstandard finite difference (NSFD) schemes that replicate
he property (6) irrespective of the values of the time and space step sizes ∆t and ∆x. We denote by ukm,
ckm and pkm the sequences in m ∈ Z and k ∈ N of approximations of u, c and p at the grid points xm = m∆x
and tk = k∆t.

The limit space-independent case of Eq. (2) is the logistic equation (1), which has the exact scheme [15]:

uk+1 − uk

exp(∆t)− 1
= uk(1− uk+1).

The advantage of the complex denominator function exp(∆t)− 1, over the standard one ∆t, is clear: there
s no error between the continuous and discrete solutions of the initial value problem associated with (1). In
what follows, we set

φ(∆t) = exp(∆t) − 1.

Our strategy is that all schemes designed in this work reduce to the exact scheme in the space independent
equation limit case. Similarly, we make use of a function ψ(∆x) ≥ 0 satisfying, like φ(∆t), the asymptotic
elation:

ψ(∆x) = ∆x+O[(∆x)2].

Typically, when the stationary equation is the harmonic oscillator, the denominator function of the discrete
derivative in the exact scheme is ψ(∆x)2 = 4 sin2

(

∆x
2

)

, [15].
Following the usual rules of the nonstandard approach, namely the nonlocal approximation of nonlinear

erms and the use of complex functions as denominators of discrete derivatives [1, 15], Eq (3) and Eq (4) are
readily approximated by

ck+1
m − ckm
φ(∆t)

= −pkmc
k+1
m or ck+1

m =
ckm

1 + φ(∆t)pkm
(7)

and
pk+1
m − pkm
ǫφ(ǫ−1∆t)

= ǫ−1(ukmc
k+1
m − pk+1

m ) or pk+1
m =

pkm + φ(ǫ−1∆t)ukmc
k+1
m

1 + φ(ǫ−1∆t)
, (8)

respectively. Notice that to approximate p in Eq (8), we use ck+1
m that is already computed.

The challenge is with Eq (2) where the NSFD methods used so far for standard reaction-diffusion equa-
tions are not appropriate, in view of the cross-diffusive term. To illustrate this fact, we consider the NSFD
scheme

uk+1
m − ukm
φ(∆t)

= ukm(1− uk+1
m )−

ukmc
k
m+1 − (ukm + ukm−1)c

k
m + ukm−1c

k
m−1

ψ(∆x)2
, (9)

proposed in [2] and elsewhere in the literature for the Fisher-KPP equation, a classical reaction-diffusion
equation, and which, on imposing the functional relation

ψ(∆x)2 = 2φ(∆t) (10)

between the step sizes, takes the explicit form

uk+1
m =

2ukm[1 + φ(∆t)]− [ukmc
k
m+1 − (ukm + ukm−1)c

k
m + ukm−1c

k
m−1]

2[1 + φ(∆t)ukm]
. (11)
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From Eq (11), it is seen that the positivity of uk+1
m is not guaranteed. This is illustrated on Fig. 5 where,

for instance, u12 < 0 and shows the need of dealing with cross-diffusion equations differently. Despite its
shortcomings, the NSFD scheme (9) is the basis for the new schemes designed below. We will design suitable
corrections of scheme (9). To this end, we proceed in two different manners. Firstly, we approximate Eq (2)
by

uk+1
m − (ukm + ukm−1)/2

φ(∆t)
= ukm(1 − uk+1

m )−
ukmc

k
m+1 − (ukm + ukm−1)c

k
m + ukm−1c

k
m−1

ψ(∆x)2
, (12)

which, under the functional relation (10), reads

uk+1
m =

2φ(∆t)ukm + ukm(1− ckm+1) + ukm−1(1 − ckm−1) + (ukm + ukm−1)c
k
m

2[1 + φ(∆t)ukm]
. (13)

We summarize our findings as follows:

Theorem 1 For u0m ≥ 0, c0m ≥ 0 and p0m ≥ 0, we have ckm ≥ 0 and pkm ≥ 0 with the sequence {ckm} being
decreasing in k. Furthermore, if c0m ≤ 1 and if the condition (10) is satisfied, then ukm ≥ 0.

Several positivity-preserving NSFD schemes have been constructed in the literature, see for example
[2, 8, 15, 17]. The underlying fact in the process is that the positive and negative parts of the right hand
side of the differential models are distinctly known. The negative part is then dealt with by nonlocal
approximation or the use of a suitable complex denominator function. In the case of the cross-diffusion
model under consideration, this distinction is not clear. The main trick in the second discretization of Eq
(2) is to decompose the approximation of the cross-diffusive term ∂

∂x

(

u ∂c
∂x

)

in Eq. (9) into its positive and
negative parts. The negative part is then multiplied by 2uk+1

m /(uk+1
m +ukm), which approximates the constant

1 as ∆t→ 0. We then obtain the NSFD scheme

uk+1
m − ukm
φ(∆t)

= ukm(1− uk+1
m ) +

(ukm + ukm−1)c
k
m

ψ(∆x)2
−
ukmc

k
m+1 + ukm−1c

k
m−1

ψ(∆x)2
×

2uk+1
m

uk+1
m + ukm

, (14)

which corresponds to the following quadratic equation in uk+1
m :

Ak
m(uk+1

m )2 +Bk
mu

k+1
m +Dk

m = 0,

where

Ak
m = 1 + φ(∆t)ukm,

Bk
m = −φ(∆t)ukm −R(ukm + ukm−1)c

k
m + 2R(ukmc

k
m+1 + ukm−1c

k
m−1), (15)

Dk
m = −(ukm)2 −R(ukm + ukm−1)u

k
mc

k
m.

When ukm ≥ 0 and ckm ≥ 0 so that Ak
m ≥ 0 and Dk

m ≤ 0, the only nonnegative root of the quadratic equation
is

uk+1
m =

−Bk
m +

√

(Bk
m)2 − 4Ak

mD
k
m

2Ak
m

. (16)

An alternative NSFD scheme to (14) is obtained by using uk+1
m /ukm ≈ 1, an idea that is exploited in [8]

for productive-destructive systems where the positive (productive) and negative (destructive) terms of the
model are, as mentioned above, unequivocally known. This leads to the NSFD scheme

uk+1
m − ukm
φ(∆t)

= ukm(1− uk+1
m ) +

(ukm + ukm−1)c
k
m

ψ(∆x)2
−
ukmc

k
m+1 + ukm−1c

k
m−1

ψ(∆x)2
×
uk+1
m

ukm
, (17)

which, on setting

R =
φ(∆t)

ψ(∆x)2
, (18)

is equivalent to

uk+1
m =

(1 + φ(∆t))ukm +R(ukm + ukm−1)c
k
m

1 + φ(∆t)ukm +R(ukmc
k
m+1 + ukm−1c

k
m−1)/u

k
m

. (19)

We have established the following result:
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Theorem 2 The NSFD schemes (16) and (19) are unconditionally dynamically consistent with respect to
positivity.

Remark 3 A few more comments are in order for the NSFD schemes (13), (16) and (19). They have no
spurious fixed-points as they preserve the equilibria of the continuous model (2)-(4). A comment on the
stability will be made later when we deal with traveling wave solutions. In the case when ukm = 0, the scheme
(13) and (16) will be preferred to the scheme (19). The latter scheme can still be used provided that an
appropriate limit is taken to deal with the indetermination 0/0. Note that the scheme (16) is also suitable
when dealing with reaction terms that are fractions of the dependent variable such as the Holling function of
types II and III, [6].

Remark 4 While there is actually no need for all three NSFD schemes, each is, however, a valid scheme
in its own and of themselves. Nevertheless, we opted to display the three schemes for the purposes of
completeness, specifically that concerns on systematic methodologies of constructing NSFD schemes are often
raised in the literature. All these schemes are qualitatively and dynamically the same in sense that they
preserve positivity of the solution in such a way that we have the increase of the connective tissue, the
decrease of the invasive cells and the growth of protease. The natural way in which the complex denominator
function φ(∆t) comes in and its relevance, which were mentioned earlier, are inherent to exact schemes
that have been designed for a wide range of differential models, [21, 15, 17]. For general NSFD schemes
[1, 15, 17], the role of the complex denominator function and of the nonlocal approximation is to incorporate
the main feature (e.g., eigenvalues of the Jacobian matrix at equilibria), of the continuous system into the
numerical method in order for the latter to be dynamically consistent for any value of the step size.

Theorem 1 and Theorem 2 are illustrated in Figs. 1 – 3 where we took ǫ = 0.2 and ∆t = 1.0. Motivated
by [4, 10], we use the following initial conditions:

u0(x) = exp(−x2); c0(x) = 1− 0.5u0(x) and p0(x) = 0.5u0(x).

In particular, for Fig. 1, the space grid size was chosen using relation (10) to be

ψ(∆x) = ∆x =
√

2φ(∆t) =
√

2(exp(0.5)− 1) =: 1. 8538. (20)

In Figs. 2 and 3 the space step size was chosen arbitrary to be ∆x = 1.0. In Fig. 4, we display simulations
for the standard finite difference analogues of schemes (7) , (8) and (12) with ∆t = 0.5. Furthermore, as
mentioned earlier, Fig. 5 refers to the NSFD scheme (11) used for classical reaction-diffusion equations.
There, with ψ(∆x) = ∆x = 1 and keeping the relation (10) in mind, we take

u0(x) =
(x− 2)2

1 + (x− 2)2
; c0(x) =

1

1 + x2
and p0(x) = 0.5u0(x).

As far as positivity and boundedness of solutions are concerned, it is evident that the NSFD schemes
constructed above specifically for the cross-diffusion equations perform better than the standard schemes
and the NSFD schemes for classical diffusion equations.
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Figure 1: NSFD schemes (7) , (8) with scheme (13) used to solve equation (2).
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Figure 2: NSFD schemes (7) , (8) with scheme (16) used to solve equation (2).
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Figure 3: NSFD schemes (7) , (8) with scheme (19) used to solve equation (2).
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Figure 4: Standard finite difference analogues of the schemes (7) , (8) and (12).

Our numerical simulations have some similarities with those in [10] where very small step sizes are used
to study tissue invasion and migration of tumor cells.

Scheme (13) Scheme (16) Scheme (19)
∆t ukm ckm pkm ukm ckm pkm ukm ckm pkm
0.5 0.9942 0.0822 0.0820 0.9588 0.0998 0.0956 0.9228 0.1106 0.1007
0.25 0.9922 0.0879 0.0881 0.9636 0.0986 0.0957 0.9370 0.1033 0.0972
0.125 0.9857 0.0930 0.0929 0.9695 0.0984 0.0967 0.9512 0.1012 0.0974
0.0625 0.9708 0.0990 0.0976 0.9725 0.0976 0.0964 0.9587 0.0995 0.0968
0.0313 0.9471 0.1058 0.1018 0.9741 0.0967 0.0958 0.9626 0.0980 0.0959

Table 1: Convergence of NSFD schemes (7) , (8), (13), (16) and (19).

In Table 1, we demonstrate computationally that the NSFD schemes are convergent: here we take
t∗ = 10 = k∆t with different values of k → ∞ and ∆t → 0, x∗ = 5 = m∆x, with m changing according to
the equation (20) for the scheme (13) and m = 5 for schemes (16) and (19). We then tabulate the values of
ukm, c

k
m and pkm.

We assume now that the partial derivative ∂p

∂t
is bounded so that

p = uc+O(ǫ).

Then, to the leading order of ǫ, the model (2)-(4) is reduced to the system

∂u

∂t
= u(1− u)−

∂

∂x

(

u
∂c

∂x

)

, (21)

∂c

∂t
= −uc2. (22)
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Figure 5: NSFD scheme (11) for classical reaction-diffusion equations

This reduced system is the setting of the study in [14] where traveling wave solutions of the form

u(x, t) = U(z) and c(x, t) = C(z), z = x− at, (23)

with speed a > 0, and the limit conditions

lim
z→−∞

U(z) = 1, lim
z→−∞

C(z) = 0, lim
z→∞

U(z) = 0 and lim
z→∞

C(z) = Ĉ,

for some constant Ĉ, are investigated. We want to demonstrate computationally that the NSFD schemes
considered above include the discrete analogue of the traveling wave solutions. To illustrate this fact which
was checked for the other scheme, we consider the NSFD scheme (17) or (19) for Eq. (21). Eq. (22) is
approximated by

ck+1
m − ckm
φ(∆t)

= −ukmc
k
mc

k+1
m or ck+1

m =
ckm

1 + φ(∆t)ukmc
k
m

, (24)

which, like the continuous equation (22), results from plugging into Eq (7) some kind of reduction of Eq (8)
to the leading term of ǫ. We assume that the step sizes satisfy the functional relation

∆x = a∆t (25)

so that any point z = xm − atk coincides with a space grid point: xm − atk = (m− k)∆x = xm−k. Fix the
integer k ≥ 0 and consider the sequences U(z) := uk+1

m and C(z) := ck+1
m , in the argument m ∈ Z, given

by Eq (15) and (24), respectively. Alternatively, one can fix m and consider the sequence in k. What was
mentioned in Remark 3 is once again easily seen here: the defining scheme preserves the equilibrium points
of the continuous model, with

E∗

m = (U∗, C∗) = (1, 0) and E∗

h(U
∗, C∗) = (0, Ĉ) for any Ĉ ≥ 0
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being the only fixed-points. On taking a = 0.5 as in [14], but with much larger values of the step sizes namely
ψ(∆x) = ∆x = 1 and thus ∆t = 2, we obtain simulations that compare with those in this reference. The
profile of traveling wave solutions included in the NSFD scheme is shown on Fig. 6(a). The limit set of the
positive orbit for the dynamical system that governs the traveling wave solution in (23) contains the unstable
malignant steady state (1, 0) and the stable healthy steady state (0, Ĉ). By Poincaré-Bendixon theorem, the
limit set contains a trajectory that joins these equilibria. This fact is displayed in Fig. 6. Furthermore, in
accordance with [14], the curves start to develop shocks which can also be seen in the full solution on Figs. 2
- 3.
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Figure 6: NSFD scheme and traveling wave solutions with the phase diagram connections of steady states
and shocks.

3 Convective predator-prey pursuit and evasion model

Next, we consider the following cross-diffusion equations that model the predator-prey system in which the
preys try to evade the predators and the predators try to catch the prey only if they interact [19]:

∂u

∂t
−

∂

∂x
[(c1 + h1

∂v

∂x
)u] = (1− u− v)u

∂v

∂t
−

∂

∂x
[(c2 − h2

∂u

∂x
)v] = (u− 1)v

or equivalently

∂u

∂t
= (1− u− v)u + (c1 + h1

∂v

∂x
)
∂u

∂x
+ h1u

∂2v

∂x2
(26)

∂v

∂t
= (u− 1)v + (c2 − h2

∂u

∂x
)
∂v

∂x
− h2v

∂2u

∂x2
. (27)

Unlike the model in the previous section, the cross-diffusion structure appears in both partial differential
equations, with a negative sign in front of at least one of the cross-diffusion terms. Here, c1 and c2 are the
speeds of the preys u and predators v, in their undisturbed movement. When predators overtake the prey,
c1 + h1

∂v
∂x

is the speed of the preys to evade, while c2 − h2
∂u
∂x

is the speed of the predators to move further
into the prey. The specific interaction terms f(u, v) = (1 − u − v)u and g(u, v) = (u − 1)v that represent
(scaled) population dynamics satisfy the relations f(u, 0) > f(u, v) and g(u, v) > g(0, v) whenever u and v
are positive, in accordance with Lotka-Volterra-type model.

For the numerical approximations, we restrict ourselves to the presentation of the approach in (17), though
it follows after some computations that the other strategies work and produce unconditionally positivity-
preserving NSFD schemes for this model. This yields the following NSFD schemes for Eqs (26) and (27),
respectively:
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uk+1
m − ukm
φ(∆t)

= (1− uk+1
m )ukm − vkmu

k+1
m +

c1ψ(∆x)u
k
m+1 + h1v

k
m+1u

k
m+1 + h1v

k
m−1u

k
m

ψ(∆x)2

−
c1ψ(∆x)u

k
m + h1v

k
mu

k
m+1 + h1v

k
mu

k
m

ψ(∆x)2
×
uk+1
m

ukm
,

vk+1
m − vkm
φ(∆t)

= −vk+1
m + vkmu

k+1
m +

c2ψ(∆x)v
k
m+1 + h2u

k
mv

k
m+1 + h2u

k
mv

k
m

ψ(∆x)2

−
c2ψ(∆x)v

k
m + h2u

k
m+1v

k
m+1 + h2u

k
m−1v

k
m

ψ(∆x)2
×
vk+1
m

vkm

These schemes are implemented by using their equivalent formulation below in the Gauss-Seidel cycle:

uk+1
m =

(1 + φ(∆t))ukm +R(c1ψ(∆x)u
k
m+1 + h1v

k
m+1u

k
m+1 + h1v

k
m−1u

k
m)

1 + φ(∆t)(ukm + vkm) +R(c1ψ(∆x)ukm + h1vkmu
k
m+1 + h1vkmu

k
m)/ukm

, (28)

vk+1
m =

vkm(1 + φ(∆t)uk+1
m ) +R(c2ψ(∆x)v

k
m+1 + h2u

k
mv

k
m+1 + h2u

k
mv

k
m)

1 + φ(∆t) +R(c2ψ(∆x)vkm + h2ukm+1v
k
m+1 + h2ukm−1v

k
m)/vkm

. (29)

The following result is obvious:

Theorem 5 The NSFD scheme preserves the positivity of the continuous solution:

ukm ≥ 0, vkm ≥ 0 =⇒ uk+1
m ≥ 0, vk+1

m ≥ 0.

Theorem 5 is illustrated in Fig. 7 where numerical simulations where obtained with initial condition

u0(x) = v0(x) = exp(−x2).

The parameters were chosen as follows: ∆t = 2, ψ(∆x) = ∆x = 0.5 and c1 = c2 = h1 = h2 = 1.
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Figure 7: Profiles for NSFD schemes (28) and (29).

Following [19], the process of pursuit and evasion with variable speeds yields a complex behavior of
solutions as seen in Fig. 7. We observed that reducing ∆t so that the usual stability condition such as
∆t

(∆)2 ≤ 1
2
holds does not remove the complex behavior of solutions (e.g., oscillations, etc). Furthermore, the

complex solutions can also be seen from the space independent limit case as shown in Fig. 9 which leads to
two equilibria E0 = (0, 0) and E1 = (1, 0), with E0 a saddle point, while the classification of E1 is not clear
since one of the eigenvalues of the Jacobian matrix in zero. Please note that [19] anticipates the possibility
of shocks. .
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Figure 8: NSFD schemes (28) and (29): the profiles were taken at x = 8.
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Figure 9: Directional field plots for the space independent limit case.

4 Basic reaction-diffusion-chemotaxis model

Our last example of cross-diffusion equations is taken from [18]. We consider the basic reaction-diffusion-
chemotaxis equation

∂n

∂t
= α

∂2n

∂x2
− β

∂

∂x
(n
∂a

∂x
), (30)

∂a

∂t
= hn− ωa+ γ

∂2a

∂x2
. (31)

Here, chemotaxis refers to the chemically directed movement of a bacterial population n up a gradient in
the food (attractant) a that the bacteria consumes. The constant α, β, γ, h and ω are positive constants
such that γ > α. Once again, we observe the negative sign in front of the cross-diffusive term.

Eq. (31) is a diffusion equation. Thus following [2], we assume that

ψ(∆x)2 = 2γφ(∆t), i.e. 2γR = 1, (32)

and approximate it by
ak+1
m − akm
φ(∆t)

= hnk
m − ωak+1

m + γ
akm+1 − 2akm + akm−1

ψ(∆x)2
, (33)

or equivalently

ak+1
m =

hφ(∆t)nk
m + (akm+1 + akm−1)/2

1 + ωφ(∆t)
. (34)
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As observed in [16], functional relations of the type (32) between time step size and space step size are essential
to reinforce the positivity property of schemes of reaction diffusion equations. However, the presence of the
complex denominator functions ψ and φ makes the condition (32) less restrictive than the classical one
(∆x)2 = 2γ∆t that is needed for stability purposes. For Eq. (31), we use the analogue of (17) for the
cross-diffusion term and the analogue of (33) for the diffusion term. This leads to the NSFD scheme

nk+1
m − nk

m

φ(∆t)
= α

nk
m+1 − 2nk

m + nk
m−1

ψ(∆x)2
+ β

(nk
m + nk

m−1)a
k
m

ψ(∆x)2
− β

nk
ma

k
m+1 + nk

m−1a
k
m−1

ψ(∆x)2
×
nk+1
m

nk
m

, (35)

which is equivalent to

nk+1
m =

(1− 2αR)nk
m + αR(nk

m+1 + nk
m−1) + βR(nk

m + nk
m−1)a

k
m

1 + βR(nk
ma

k
m+1 + nk

m−1a
k
m−1)/n

k
m

. (36)

In view of the conditions (32) and α < γ, we have the following result:

Theorem 6 The NSFD scheme (33) and (35) for (30)-(31) preserves the positivity of the continuous solu-
tion under the relation (32):

nk
m ≥ 0, akm ≥ 0 =⇒ nk+1

m ≥ 0, ak+1
m ≥ 0.

Theorem 6 is illustrated in Fig. 10 and Fig. 11 where numerical simulations where obtained with initial
conditions

n0(x) = a0(x) = exp(−x2).

The parameters were chosen as follows: ∆t = 2, and h = γ = ω = β = 1, α = 0.5 and ψ(∆x) as in (20).
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Figure 10: NSFD schemes (34) and (36).

5 Conclusion

This paper is motivated by an outstanding problem that was posed by Mickens several years ago and has
been recently captured in his edited volume [17]. That is the design of positivity-preserving NSFD schemes
for cross-diffusion systems in biosciences.

By a suitable use of Mickens’ rules, we have successfully solved the problem in the setting of the follow-
ing three systems: model of malignant invasion, convective predator-prey pursuit and evasion model and
reaction-diffusion-chemotaxis model. In the particular case of the cancer model for which more detail has
been given in the paper, we have shown computationally that our NSFD schemes are also dynamically con-
sistent with some of the properties of the traveling wave solutions of the continuous model investigated in
[14].
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Figure 11: NSFD schemes (34) and (36): the profiles were taken at x = 6.

Our immediate interest for future is three-fold. We will study the well-posedness of the models and
couple it with the theoretical analysis of the convergence, consistency and stability of the NSFD schemes.
Secondly, we plan to incorporate therapy strategies in the model, with the aim of blocking tumor growth
and dissemination. As suggested in [20], this amounts to design a mechanism that targets angiogenesis or
interrupts blood supply to the solid tumors at their vascular phase. Finally, we will extend this constructive
study to the design of dynamically constant NSFD schemes for more complex cancer invasion models such
as those that are based on the lymphangiogenesis process [3, 20].
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