816 research outputs found

    Similarity and bisimilarity notions appropriate for characterizing indistinguishability in fragments of the calculus of relations

    Full text link
    Motivated by applications in databases, this paper considers various fragments of the calculus of binary relations. The fragments are obtained by leaving out, or keeping in, some of the standard operators, along with some derived operators such as set difference, projection, coprojection, and residuation. For each considered fragment, a characterization is obtained for when two given binary relational structures are indistinguishable by expressions in that fragment. The characterizations are based on appropriately adapted notions of simulation and bisimulation.Comment: 36 pages, Journal of Logic and Computation 201

    Singly generated quasivarieties and residuated structures

    Get PDF
    A quasivariety K of algebras has the joint embedding property (JEP) iff it is generated by a single algebra A. It is structurally complete iff the free countably generated algebra in K can serve as A. A consequence of this demand, called "passive structural completeness" (PSC), is that the nontrivial members of K all satisfy the same existential positive sentences. We prove that if K is PSC then it still has the JEP, and if it has the JEP and its nontrivial members lack trivial subalgebras, then its relatively simple members all belong to the universal class generated by one of them. Under these conditions, if K is relatively semisimple then it is generated by one K-simple algebra. It is a minimal quasivariety if, moreover, it is PSC but fails to unify some finite set of equations. We also prove that a quasivariety of finite type, with a finite nontrivial member, is PSC iff its nontrivial members have a common retract. The theory is then applied to the variety of De Morgan monoids, where we isolate the sub(quasi)varieties that are PSC and those that have the JEP, while throwing fresh light on those that are structurally complete. The results illuminate the extension lattices of intuitionistic and relevance logics

    Finite Model Properties for Residuated Semigroups

    Full text link
    We have a quick look at various finite model properties for residuated semigroups. In particular, we solve Problem 19.17 from Relation Algebras by Games by Hirsch and Hodkinson

    Order algebraizable logics

    Get PDF
    AbstractThis paper develops an order-theoretic generalization of Blok and Pigozziʼs notion of an algebraizable logic. Unavoidably, the ordered model class of a logic, when it exists, is not unique. For uniqueness, the definition must be relativized, either syntactically or semantically. In sentential systems, for instance, the order algebraization process may be required to respect a given but arbitrary polarity on the signature. With every deductive filter of an algebra of the pertinent type, the polarity associates a reflexive and transitive relation called a Leibniz order, analogous to the Leibniz congruence of abstract algebraic logic (AAL). Some core results of AAL are extended here to sentential systems with a polarity. In particular, such a system is order algebraizable if the Leibniz order operator has the following four independent properties: (i) it is injective, (ii) it is isotonic, (iii) it commutes with the inverse image operator of any algebraic homomorphism, and (iv) it produces anti-symmetric orders when applied to filters that define reduced matrix models. Conversely, if a sentential system is order algebraizable in some way, then the order algebraization process naturally induces a polarity for which the Leibniz order operator has properties (i)–(iv)

    Sequent and Hypersequent Calculi for Abelian and Lukasiewicz Logics

    Full text link
    We present two embeddings of infinite-valued Lukasiewicz logic L into Meyer and Slaney's abelian logic A, the logic of lattice-ordered abelian groups. We give new analytic proof systems for A and use the embeddings to derive corresponding systems for L. These include: hypersequent calculi for A and L and terminating versions of these calculi; labelled single sequent calculi for A and L of complexity co-NP; unlabelled single sequent calculi for A and L.Comment: 35 pages, 1 figur

    Lower semilattice-ordered residuated semigroups and substructural logics

    Get PDF
    We look at lower semilattice-ordered residuated semigroups and, in particular, the representable ones, i.e., those that are isomorphic to algebras of binary relations. We will evaluate expressions (terms, sequents, equations, quasi-equations) in representable algebras and give finite axiomatizations for several notions of validity. These results will be applied in the context of substructural logics

    Relevant Logics Obeying Component Homogeneity

    Get PDF
    This paper discusses three relevant logics that obey Component Homogeneity - a principle that Goddard and Routley introduce in their project of a logic of significance. The paper establishes two main results. First, it establishes a general characterization result for two families of logic that obey Component Homogeneity - that is, we provide a set of necessary and sufficient conditions for their consequence relations. From this, we derive characterization results for S*fde, dS*fde, crossS*fde. Second, the paper establishes complete sequent calculi for S*fde, dS*fde, crossS*fde. Among the other accomplishments of the paper, we generalize the semantics from Bochvar, Hallden, Deutsch and Daniels, we provide a general recipe to define containment logics, we explore the single-premise/single-conclusion fragment of S*fde, dS*fde, crossS*fdeand the connections between crossS*fde and the logic Eq of equality by Epstein. Also, we present S*fde as a relevant logic of meaninglessness that follows the main philosophical tenets of Goddard and Routley, and we briefly examine three further systems that are closely related to our main logics. Finally, we discuss Routley's criticism to containment logic in light of our results, and overview some open issues

    Coalgebraic completeness-via-canonicity for distributive substructural logics

    Get PDF
    We prove strong completeness of a range of substructural logics with respect to a natural poset-based relational semantics using a coalgebraic version of completeness-via-canonicity. By formalizing the problem in the language of coalgebraic logics, we develop a modular theory which covers a wide variety of different logics under a single framework, and lends itself to further extensions. Moreover, we believe that the coalgebraic framework provides a systematic and principled way to study the relationship between resource models on the semantics side, and substructural logics on the syntactic side.Comment: 36 page
    corecore