6 research outputs found

    Design of second order sliding mode observer based equivalent Back-EMF for rotor position estimation of PMSM

    Get PDF
    This study introduces a scheme to estimate rotor position by the use of an Equal electromotive force (EMF) model of a synchronous machine. This use could be substituted by a sliding-mode observer (SMO) according to an equal EMF for superior reference speed tracking. There is an algorithm of the second order sliding-mode-control (SO-SMC) in controlling speed of permanent magnet synchronous motor (PMSM). This is by the use of the proportional plus-integral PI control sliding plane. The current work discusses the PMSM, which follows field-oriented appears. In addition, there are SO-SMC laws and PI sliding plans. This paper shows that the proposed high-speed PMSM sensorless speed control is valid by MATLAB simulations

    Improved position offset based parameter determination of permanent magnet synchronous machines under different load conditions

    Get PDF
    © The Institution of Engineering and Technology 2017.This study proposes a novel method for the parameter determination of permanent magnet (PM) synchronous machines under different load conditions. It can identify the total dq-axis flux linkages and also the PM flux linkage separately by the addition of a pair of negative and positive position offsets. It is also noteworthy that the influence of uncertain inverter non-linearity and winding resistance is cancelled during the modelling process, and the experimental results on two different PM synchronous machines show a good agreement with the finite-element prediction results. More importantly, it shows good performance in online tracking the variation of PM flux linkage, which is an important feature for aiding the condition monitoring of PMs, for example, monitoring the temperature of PMs

    Dynamic Performance Analysis of a Five-Phase PMSM Drive Using Model Reference Adaptive System and Enhanced Sliding Mode Observer

    Get PDF
    This paper aims to evaluate the dynamic performance of a five-phase PMSM drive using two different observers: sliding mode (SMO) and model reference adaptive system (MRAS). The design of the vector control for the drive is firstly introduced in details to visualize the proper selection of speed and current controllers’ gains, then the construction of the two observers are presented. The stability check for the two observers are also presented and analyzed, and finally the evaluation results are presented to visualize the features of each sensorless technique and identify the advantages and shortages as well. The obtained results reveal that the de-signed SMO exhibits better performance and enhanced robustness compared with the MRAS under different operating conditions. This fact is approved through the obtained results considering a mismatch in the values of stator resistance and stator inductance as well. Large deviation in the values of estimated speed and rotor position are observed under MRAS, and this is also accompanied with high speed and torque oscillations

    Position-offset-based parameter estimation using the adaline NN for condition monitoring of permanent-magnet synchronous machines

    No full text
    This paper proposes how to use the addition of rotor position offsets as perturbation signals for the parameter estimation of permanent-magnet synchronous machines (PMSMs), which can be used for the condition monitoring of rotor permanent magnet and stator winding. During the proposed estimation, two small position offsets are intentionally added into the drive system, and the resulting voltage variation will be recorded for the estimation of rotor flux linkage. With the aid from estimated rotor flux linkage, the stator winding resistance can be subsequently estimated at steady state. This method is experimentally verified on two prototype PMSMs (150 W and 3 kW, respectively) and shows good performance in monitoring the variation of rotor flux linkage and winding resistance

    A Rotor Flux Linkage Estimator and Operating Envelopes of a Variable-Flux IPM Synchronous Machine

    Get PDF
    Interior permanent magnet synchronous machines (IPMSMs) with rare-earth magnets are widely used by the electric and hybrid electric vehicle industry due to their high efficiency and high torque density. The drawbacks of the IPMSMs like the fluctuating prices of the rare-earth permanent magnets (PMs), the difficulty in flux weakening, and relatively low efficiency in the high-speed region, triggered the need for alternative electrical machines for traction applications. The variable-flux type IPMSMs, also called memory motors, is a promising technology for electrified transportation applications. These machines make use of low-coercivity magnets such as AlNiCo magnets, which makes them rare-earth PM independent. Moreover, owing to the low-coercivity, the AlNiCo magnets can be demagnetized in the high-speed region. This reduces or eliminates the extra current component needed for flux weakening, which results in lower copper/iron losses and improved machine efficiency. Besides, the variable-flux IPMSMs can provide torque densities comparable to rare-earth IPMSMs in high-torque low-speed regions. Since the magnetization state of AlNiCo magnets can be varied online by a short stator current pulse, and the current needed for a particular magnetization state is machine parameter dependent, it is of a vital importance to the drive system to keep track of the magnet flux during transient and steady-state conditions. Moreover, failing in depicting the actual magnetization state of the magnets means a mismatch between the real value of the magnet flux in the machine and the estimated one in the controller, which directly affects the resultant torque and performance. In addition, the current pulse excitation method for magnetization causes non-uniform variable flux distribution in the air-gap. Therefore, an estimation algorithm of the rotor flux linkage of variable-flux IPMSMs via flux harmonics extraction has been proposed. Compared to the existing methods, this method does not need any voltage or current signal injection into the stator winding. The algorithm was experimentally evaluated for different magnetization states and showed a good performance in tracking the rotor flux linkage variations during transient and steady-state conditions The operating envelopes of the variable-flux IPMSM were found to be affected by the nonlinearity of the magnet flux with the machine direct axis current. New analytical solutions for the operating point were reached for maximum power and maximum output voltage control for the variable-flux IPMSM taking into consideration this nonlinearity. The experimental measurement performed also support the analytical results. The irreversible demagnetization of the low-coercivity magnets in the high-speed region results in extending the braking time of the variable-flux IPMSMs. A simple yet effective minimal-time braking algorithm is proposed and experimentally validated

    Perspective of thermal analysis and management for permanent magnet machines, with particular reference to hotspot temperatures

    Get PDF
    Permanent magnet (PM) machines have been extensively used for various applications. Nevertheless, thermal effect, particularly hotspot temperature, not only severely restricts power/torque density but also leads to deteriorations in electromagnetic performance, service life, and reliability. Starting with foundations of PM machines and heat transfer mechanisms, this paper reviews the development of thermal analysis methods over the last thirty years and the state-of-the-art research achievements, and the hotspot temperatures of winding and PM are particularly evaluated. In the overview, various machine losses and cooling techniques are first introduced, which are the essential reasons for temperature rise and the most straightforward way to remove the generated heat. Afterwards, the mainstream thermal analysis techniques, i.e., numerical techniques, lumped-parameter thermal model, and hybrid thermal models, as well as the online electrical parameter-based and thermal model-based temperature monitoring techniques, are reviewed and assessed in depth. In addition, this paper also reviews the analytical thermal modelling methods for winding and PM. Finally, future research trends are highlighted
    corecore