2,571 research outputs found

    Robust tuning of robot control systems

    Get PDF
    The computed torque control problem is examined for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators because of the dynamics introduced by the joint drive system. The proposed approach to computed torque control combines a computed torque algorithm with torque controller at each joint. Three such control schemes are proposed. The first scheme uses the joint torque control system currently implemented on the robot arm and a novel form of the computed torque algorithm. The other two use the standard computed torque algorithm and a novel model following torque control system based on model following techniques. Standard tasks and performance indices are used to evaluate the performance of the controllers. Both numerical simulations and experiments are used in evaluation. The study shows that all three proposed systems lead to improved tracking performance over a conventional PD controller

    PID - Gain Scheduling Controller for a Robot Manipulator

    Get PDF
    This paper presents the implementation of an adaptive PD - Gain Scheduling controller for a six-degree-of-freedom robot manipulator. Uncoupled PD controllers are proposed for each joint where each single manipulator joint is controlled independently of the others. The gain scheduling technique enables the controller to adapt on-line the PD parameters depending on the operation conditions (essentially the robot arm position). The nonlinear dynamic model of the robot arm is then linearized discarding non-linear terms which are considered as model uncertainties, and a continuous adaptation law for the PD controller parameters is proposed. The overall control strategy can be regarded as composed by a non-linear transformation (adaptation law), followed by a linear PD regulator. This simple technique offers promising results with respect to the traditional worst-case PD design.Ministerio de Ciencia y Tecnología TAP98-054

    A New Approach of the Online Tuning Gain Scheduling Nonlinear PID Controller Using Neural Network

    Get PDF
    This chapter presents the design, development and implementation of a novel proposed online-tuning Gain Scheduling Dynamic Neural PID (DNN-PID) Controller using neural network suitable for real-time manipulator control applications. The unique feature of the novel DNN-PID controller is that it has highly simple and dynamic self-organizing structure, fast online-tuning speed, good generalization and flexibility in online-updating. The proposed adaptive algorithm focuses on fast and efficiently optimizing Gain Scheduling and PID weighting parameters of Neural MLPNN model used in DNN-PID controller. This approach is employed to implement the DNN-PID controller with a view of controlling the joint angle position of the highly nonlinear pneumatic artificial muscle (PAM) manipulator in real-time through Real-Time Windows Target run in MATLAB SIMULINK® environment. The performance of this novel proposed controller was found to be outperforming in comparison with conventional PID controller. These results can be applied to control other highly nonlinear SISO and MIMO systems. Keywords: highly nonlinear PAM manipulator, proposed online tuning Gain Scheduling Dynamic Nonlinear PID controller (DNN-PID), real-time joint angle position control, fast online tuning back propagation (BP) algorithm, pneumatic artificial muscle (PAM) actuator

    A discrete decentralized variable structure robotic controller

    Get PDF
    A decentralized trajectory controller for robotic manipulators is designed and tested using a multiprocessor architecture and a PUMA 560 robot arm. The controller is made up of a nominal model-based component and a correction component based on a variable structure suction control approach. The second control component is designed using bounds on the difference between the used and actual values of the model parameters. Since the continuous manipulator system is digitally controlled along a trajectory, a discretized equivalent model of the manipulator is used to derive the controller. The motivation for decentralized control is that the derived algorithms can be executed in parallel using a distributed, relatively inexpensive, architecture where each joint is assigned a microprocessor. Nonlinear interaction and coupling between joints is treated as a disturbance torque that is estimated and compensated for

    On discrete control of nonlinear systems with applications to robotics

    Get PDF
    Much progress has been reported in the areas of modeling and control of nonlinear dynamic systems in a continuous-time framework. From implementation point of view, however, it is essential to study these nonlinear systems directly in a discrete setting that is amenable for interfacing with digital computers. But to develop discrete models and discrete controllers for a nonlinear system such as robot is a nontrivial task. Robot is also inherently a variable-inertia dynamic system involving additional complications. Not only the computer-oriented models of these systems must satisfy the usual requirements for such models, but these must also be compatible with the inherent capabilities of computers and must preserve the fundamental physical characteristics of continuous-time systems such as the conservation of energy and/or momentum. Preliminary issues regarding discrete systems in general and discrete models of a typical industrial robot that is developed with full consideration of the principle of conservation of energy are presented. Some research on the pertinent tactile information processing is reviewed. Finally, system control methods and how to integrate these issues in order to complete the task of discrete control of a robot manipulator are also reviewed
    corecore