1,012 research outputs found

    Posets having continuous intervals

    Get PDF
    In this paper we consider posets in which each order interval [a,b] is a continuous poset or continuous domain. After developing some basic theory for such posets, we derive our major result: if X is a core compact space and L is a poset equipped with the Scott topology (assumed to satisfy a mild extra condition) for which each interval is a continuous sup-semilattice, then the function space of continuous locally bounded functions from X into L has intervals that are continuous sup-semilattices. This substantially generalizes known results for continuous domains. © 2004 Elsevier B.V. All rights reserved

    Causal posets, loops and the construction of nets of local algebras for QFT

    Full text link
    We provide a model independent construction of a net of C*-algebras satisfying the Haag-Kastler axioms over any spacetime manifold. Such a net, called the net of causal loops, is constructed by selecting a suitable base K encoding causal and symmetry properties of the spacetime. Considering K as a partially ordered set (poset) with respect to the inclusion order relation, we define groups of closed paths (loops) formed by the elements of K. These groups come equipped with a causal disjointness relation and an action of the symmetry group of the spacetime. In this way the local algebras of the net are the group C*-algebras of the groups of loops, quotiented by the causal disjointness relation. We also provide a geometric interpretation of a class of representations of this net in terms of causal and covariant connections of the poset K. In the case of the Minkowski spacetime, we prove the existence of Poincar\'e covariant representations satisfying the spectrum condition. This is obtained by virtue of a remarkable feature of our construction: any Hermitian scalar quantum field defines causal and covariant connections of K. Similar results hold for the chiral spacetime S1S^1 with conformal symmetry

    Finite Approximations to Quantum Physics: Quantum Points and their Bundles

    Full text link
    There exists a physically well motivated method for approximating manifolds by certain topological spaces with a finite or a countable set of points. These spaces, which are partially ordered sets (posets) have the power to effectively reproduce important topological features of continuum physics like winding numbers and fractional statistics, and that too often with just a few points. In this work, we develop the essential tools for doing quantum physics on posets. The poset approach to covering space quantization, soliton physics, gauge theories and the Dirac equation are discussed with emphasis on physically important topological aspects. These ideas are illustrated by simple examples like the covering space quantization of a particle on a circle, and the sine-Gordon solitons.Comment: 24 pages, 8 figures on a uuencoded postscript file, DSF-T-29/93, INFN-NA-IV-29/93 and SU-4240-55

    Unsharp Values, Domains and Topoi

    Full text link
    The so-called topos approach provides a radical reformulation of quantum theory. Structurally, quantum theory in the topos formulation is very similar to classical physics. There is a state object, analogous to the state space of a classical system, and a quantity-value object, generalising the real numbers. Physical quantities are maps from the state object to the quantity-value object -- hence the `values' of physical quantities are not just real numbers in this formalism. Rather, they are families of real intervals, interpreted as `unsharp values'. We will motivate and explain these aspects of the topos approach and show that the structure of the quantity-value object can be analysed using tools from domain theory, a branch of order theory that originated in theoretical computer science. Moreover, the base category of the topos associated with a quantum system turns out to be a domain if the underlying von Neumann algebra is a matrix algebra. For general algebras, the base category still is a highly structured poset. This gives a connection between the topos approach, noncommutative operator algebras and domain theory. In an outlook, we present some early ideas on how domains may become useful in the search for new models of (quantum) space and space-time.Comment: 32 pages, no figures; to appear in Proceedings of Quantum Field Theory and Gravity, Regensburg (2010

    Representations of nets of C*-algebras over S^1

    Full text link
    In recent times a new kind of representations has been used to describe superselection sectors of the observable net over a curved spacetime, taking into account of the effects of the fundamental group of the spacetime. Using this notion of representation, we prove that any net of C*-algebras over S^1 admits faithful representations, and when the net is covariant under Diff(S^1), it admits representations covariant under any amenable subgroup of Diff(S^1)

    The EtE_t-Construction for Lattices, Spheres and Polytopes

    Full text link
    We describe and analyze a new construction that produces new Eulerian lattices from old ones. It specializes to a construction that produces new strongly regular cellular spheres (whose face lattices are Eulerian). The construction does not always specialize to convex polytopes; however, in a number of cases where we can realize it, it produces interesting classes of polytopes. Thus we produce an infinite family of rational 2-simplicial 2-simple 4-polytopes, as requested by Eppstein, Kuperberg and Ziegler. We also construct for each d3d\ge3 an infinite family of (d2)(d-2)-simplicial 2-simple dd-polytopes, thus solving a problem of Gr\"unbaum.Comment: 21 pages, many figure
    corecore