4,788 research outputs found

    On lattices and their ideal lattices, and posets and their ideal posets

    Full text link
    For P a poset or lattice, let Id(P) denote the poset, respectively, lattice, of upward directed downsets in P, including the empty set, and let id(P)=Id(P)-\{\emptyset\}. This note obtains various results to the effect that Id(P) is always, and id(P) often, "essentially larger" than P. In the first vein, we find that a poset P admits no "<"-respecting map (and so in particular, no one-to-one isotone map) from Id(P) into P, and, going the other way, that an upper semilattice S admits no semilattice homomorphism from any subsemilattice of itself onto Id(S). The slightly smaller object id(P) is known to be isomorphic to P if and only if P has ascending chain condition. This result is strengthened to say that the only posets P_0 such that for every natural number n there exists a poset P_n with id^n(P_n)\cong P_0 are those having ascending chain condition. On the other hand, a wide class of cases is noted here where id(P) is embeddable in P. Counterexamples are given to many variants of the results proved.Comment: 8 pages. Copy at http://math.berkeley.edu/~gbergman/papers may be updated more frequently than arXiv copy. After publication, updates, errata, etc. may be noted at that pag
    • …
    corecore