298 research outputs found

    Approximations from Anywhere and General Rough Sets

    Full text link
    Not all approximations arise from information systems. The problem of fitting approximations, subjected to some rules (and related data), to information systems in a rough scheme of things is known as the \emph{inverse problem}. The inverse problem is more general than the duality (or abstract representation) problems and was introduced by the present author in her earlier papers. From the practical perspective, a few (as opposed to one) theoretical frameworks may be suitable for formulating the problem itself. \emph{Granular operator spaces} have been recently introduced and investigated by the present author in her recent work in the context of antichain based and dialectical semantics for general rough sets. The nature of the inverse problem is examined from number-theoretic and combinatorial perspectives in a higher order variant of granular operator spaces and some necessary conditions are proved. The results and the novel approach would be useful in a number of unsupervised and semi supervised learning contexts and algorithms.Comment: 20 Pages. Scheduled to appear in IJCRS'2017 LNCS Proceedings, Springe

    A Diffie-Hellman based key management scheme for hierarchical access control

    Get PDF
    All organizations share data in a carefully managed fashion\ud by using access control mechanisms. We focus on enforcing access control by encrypting the data and managing the encryption keys. We make the realistic assumption that the structure of any organization is a hierarchy of security classes. Data from a certain security class can only be accessed by another security class, if it is higher or at the same level in the hierarchy. Otherwise access is denied. Our solution is based on the Die-Hellman key exchange protocol. We show, that the theoretical worst case performance of our solution is slightly better than that of all other existing solutions. We also show, that our performance in practical cases is linear in the size of the hierarchy, whereas the best results from the literature are quadratic

    On uniquely k-determined permutations

    Get PDF
    There are several approaches to study occurrences of consecutive patterns in permutations such as the inclusion-exclusion method, the tree representations of permutations, the spectral approach and others. We propose yet another approach to study occurrences of consecutive patterns in permutations. The approach is based on considering the graph of patterns overlaps, which is a certain subgraph of the de Bruijn graph. While applying our approach, the notion of a uniquely kk-determined permutation appears. We give two criteria for a permutation to be uniquely kk-determined: one in terms of the distance between two consecutive elements in a permutation, and the other one in terms of directed hamiltonian paths in the certain graphs called path-schemes. Moreover, we describe a finite set of prohibitions that gives the set of uniquely kk-determined permutations. Those prohibitions make applying the transfer matrix method possible for determining the number of uniquely kk-determined permutations.Comment: 12 page

    Geometric lattice structure of covering and its application to attribute reduction through matroids

    Full text link
    The reduction of covering decision systems is an important problem in data mining, and covering-based rough sets serve as an efficient technique to process the problem. Geometric lattices have been widely used in many fields, especially greedy algorithm design which plays an important role in the reduction problems. Therefore, it is meaningful to combine coverings with geometric lattices to solve the optimization problems. In this paper, we obtain geometric lattices from coverings through matroids and then apply them to the issue of attribute reduction. First, a geometric lattice structure of a covering is constructed through transversal matroids. Then its atoms are studied and used to describe the lattice. Second, considering that all the closed sets of a finite matroid form a geometric lattice, we propose a dependence space through matroids and study the attribute reduction issues of the space, which realizes the application of geometric lattices to attribute reduction. Furthermore, a special type of information system is taken as an example to illustrate the application. In a word, this work points out an interesting view, namely, geometric lattice to study the attribute reduction issues of information systems
    • …
    corecore