11,721 research outputs found

    Pose-Invariant 3D Face Alignment

    Full text link
    Face alignment aims to estimate the locations of a set of landmarks for a given image. This problem has received much attention as evidenced by the recent advancement in both the methodology and performance. However, most of the existing works neither explicitly handle face images with arbitrary poses, nor perform large-scale experiments on non-frontal and profile face images. In order to address these limitations, this paper proposes a novel face alignment algorithm that estimates both 2D and 3D landmarks and their 2D visibilities for a face image with an arbitrary pose. By integrating a 3D deformable model, a cascaded coupled-regressor approach is designed to estimate both the camera projection matrix and the 3D landmarks. Furthermore, the 3D model also allows us to automatically estimate the 2D landmark visibilities via surface normals. We gather a substantially larger collection of all-pose face images to evaluate our algorithm and demonstrate superior performances than the state-of-the-art methods

    Sign-correlation partition based on global supervised descent method for face alignment

    Get PDF
    Face alignment is an essential task for facial performance capture and expression analysis. As a complex nonlinear problem in computer vision, face alignment across poses is still not studied well. Although the state-of-the-art Supervised Descent Method (SDM) has shown good performance, it learns conflict descent direction in the whole complex space due to various poses and expressions. Global SDM has been presented to deal with this case by domain partition in feature and shape PCA spaces for face tracking and pose estimation. However, it is not suitable for the face alignment problem due to unknown ground truth shapes. In this paper we propose a sign-correlation subspace method for the domain partition of global SDM. In our method only one reduced low dimensional subspace is enough for domain partition, thus adjusting the global SDM efficiently for face alignment. Unlike previous methods, we analyze the sign correlation between features and shapes, and project both of them into a mutual sign-correlation subspace. Each pair of projected shape and feature keep sign consistent in each dimension of the subspace, so that each hyperoctant holds the condition that one general descent exists. Then a set of general descent directions are learned from the samples in different hyperoctants. Our sign-correlation partition method is validated in the public face datasets, which includes a range of poses. It indicates that our methods can reveal their latent relationships to poses. The comparison with state-of-the-art methods for face alignment demonstrates that our method outperforms them especially in uncontrolled conditions with various poses, while keeping comparable speed
    • …
    corecore