478 research outputs found

    Multi-view self-supervised deep learning for 6D pose estimation in the Amazon Picking Challenge

    Get PDF
    Robot warehouse automation has attracted significant interest in recent years, perhaps most visibly in the Amazon Picking Challenge (APC) [1]. A fully autonomous warehouse pick-and-place system requires robust vision that reliably recognizes and locates objects amid cluttered environments, self-occlusions, sensor noise, and a large variety of objects. In this paper we present an approach that leverages multiview RGB-D data and self-supervised, data-driven learning to overcome those difficulties. The approach was part of the MIT-Princeton Team system that took 3rd- and 4th-place in the stowing and picking tasks, respectively at APC 2016. In the proposed approach, we segment and label multiple views of a scene with a fully convolutional neural network, and then fit pre-scanned 3D object models to the resulting segmentation to get the 6D object pose. Training a deep neural network for segmentation typically requires a large amount of training data. We propose a self-supervised method to generate a large labeled dataset without tedious manual segmentation. We demonstrate that our system can reliably estimate the 6D pose of objects under a variety of scenarios. All code, data, and benchmarks are available at http://apc.cs.princeton.edu

    Multi-view self-supervised deep learning for 6D pose estimation in the Amazon Picking Challenge

    Get PDF
    Robot warehouse automation has attracted significant interest in recent years, perhaps most visibly in the Amazon Picking Challenge (APC) [1]. A fully autonomous warehouse pick-and-place system requires robust vision that reliably recognizes and locates objects amid cluttered environments, self-occlusions, sensor noise, and a large variety of objects. In this paper we present an approach that leverages multiview RGB-D data and self-supervised, data-driven learning to overcome those difficulties. The approach was part of the MIT-Princeton Team system that took 3rd- and 4th-place in the stowing and picking tasks, respectively at APC 2016. In the proposed approach, we segment and label multiple views of a scene with a fully convolutional neural network, and then fit pre-scanned 3D object models to the resulting segmentation to get the 6D object pose. Training a deep neural network for segmentation typically requires a large amount of training data. We propose a self-supervised method to generate a large labeled dataset without tedious manual segmentation. We demonstrate that our system can reliably estimate the 6D pose of objects under a variety of scenarios. All code, data, and benchmarks are available at http://apc.cs.princeton.edu

    3D object recognition without CAD models for industrial robot manipulation

    Get PDF
    In this work we present a new algorithm for 3D object recognition. The goal is to identify the correct position and orientation of complex objects without using a CAD model, input of main current systems. The approach we follow performs feature matching. The characteristics extracted belong only by shape information to achieve a system independent to brightness, colour or texture. Designing opportune settable parameters, we allow recognition also in presence of small deformation

    Superquadric representation of scenes from multi-view range data

    Get PDF
    Object representation denotes representing three-dimensional (3D) real-world objects with known graphic or mathematic primitives recognizable to computers. This research has numerous applications for object-related tasks in areas including computer vision, computer graphics, reverse engineering, etc. Superquadrics, as volumetric and parametric models, have been selected to be the representation primitives throughout this research. Superquadrics are able to represent a large family of solid shapes by a single equation with only a few parameters. This dissertation addresses superquadric representation of multi-part objects and multiobject scenes. Two issues motivate this research. First, superquadric representation of multipart objects or multi-object scenes has been an unsolved problem due to the complex geometry of objects. Second, superquadrics recovered from single-view range data tend to have low confidence and accuracy due to partially scanned object surfaces caused by inherent occlusions. To address these two problems, this dissertation proposes a multi-view superquadric representation algorithm. By incorporating both part decomposition and multi-view range data, the proposed algorithm is able to not only represent multi-part objects or multi-object scenes, but also achieve high confidence and accuracy of recovered superquadrics. The multi-view superquadric representation algorithm consists of (i) initial superquadric model recovery from single-view range data, (ii) pairwise view registration based on recovered superquadric models, (iii) view integration, (iv) part decomposition, and (v) final superquadric fitting for each decomposed part. Within the multi-view superquadric representation framework, this dissertation proposes a 3D part decomposition algorithm to automatically decompose multi-part objects or multiobject scenes into their constituent single parts consistent with human visual perception. Superquadrics can then be recovered for each decomposed single-part object. The proposed part decomposition algorithm is based on curvature analysis, and includes (i) Gaussian curvature estimation, (ii) boundary labeling, (iii) part growing and labeling, and (iv) post-processing. In addition, this dissertation proposes an extended view registration algorithm based on superquadrics. The proposed view registration algorithm is able to handle deformable superquadrics as well as 3D unstructured data sets. For superquadric fitting, two objective functions primarily used in the literature have been comprehensively investigated with respect to noise, viewpoints, sample resolutions, etc. The objective function proved to have better performance has been used throughout this dissertation. In summary, the three algorithms (contributions) proposed in this dissertation are generic and flexible in the sense of handling triangle meshes, which are standard surface primitives in computer vision and graphics. For each proposed algorithm, the dissertation presents both theory and experimental results. The results demonstrate the efficiency of the algorithms using both synthetic and real range data of a large variety of objects and scenes. In addition, the experimental results include comparisons with previous methods from the literature. Finally, the dissertation concludes with a summary of the contributions to the state of the art in superquadric representation, and presents possible future extensions to this research
    • …
    corecore