8,912 research outputs found

    Multiscale understanding of tricalcium silicate hydration reactions

    Get PDF
    Tricalcium silicate, the main constituent of Portland cement, hydrates to produce crystalline calcium hydroxide and calcium-silicate-hydrates (C-S-H) nanocrystalline gel. This hydration reaction is poorly understood at the nanoscale. The understanding of atomic arrangement in nanocrystalline phases is intrinsically complicated and this challenge is exacerbated by the presence of additional crystalline phase(s). Here, we use calorimetry and synchrotron X-ray powder diffraction to quantitatively follow tricalcium silicate hydration process: i) its dissolution, ii) portlandite crystallization and iii) C-S-H gel precipitation. Chiefly, synchrotron pair distribution function (PDF) allows to identify a defective clinotobermorite, Ca11Si9O28(OH)2.8.5H2O, as the nanocrystalline component of C-S-H. Furthermore, PDF analysis also indicates that C-S-H gel contains monolayer calcium hydroxide which is stretched as recently predicted by first principles calculations. These outcomes, plus additional laboratory characterization, yielded a multiscale picture for C-S-H nanocomposite gel which explains the observed densities and Ca/Si atomic ratios at the nano- and meso- scales.This work has been supported by Spanish MINECO through BIA2014-57658-C2-2-R, which is co-funded by FEDER, BIA2014-57658-C2-1-R and I3 (IEDI-2016-0079) grants. We also thank CELLS-ALBA (Barcelona, Spain) for providing synchrotron beam time at BL04-MSPD beamline

    Rietveld Quantitative Phase Analysis of Oil Well Cement: in Situ Hydration Study at 150 Bars and 150 °C

    Get PDF
    Oil and gas well cements are multimineral materials that hydrate under high pressure and temperature. Their overall reactivity at early ages is studied by a number of techniques including through the use of the consistometer. However, for a proper understanding of the performance of these cements in the field, the reactivity of every component, in real‐world conditions, must be analysed. To date, in situ high energy synchrotron powder diffraction studies of hydrating oil well cement pastes have been carried out, but the quality of the data was not appropriated for Rietveld quantitative phase analyses. Therefore, the phase reactivities were followed by the inspection of the evolution of non‐overlapped diffraction peaks. Very recently, we have developed a new cell specially designed to rotate under high pressure and temperature. Here, this spinning capillary cell is used for in situ studies of the hydration of a commercial oil well cement paste at 150 bars and 150 °C. The powder diffraction data were analysed by the Rietveld method to quantitatively determine the reactivities of each component phase. The reaction degree of alite was 90% after 7 hours, and that of belite was 42% at 14 hours. These analyses are accurate, as the in situ measured crystalline portlandite content at the end of the experiment, 12.9 wt%, compares relatively well with the value determined ex situ by thermal analysis, i.e., 14.0 wt%. The crystalline calcium silicates forming at 150 bars and 150 °C are also discussed.This research was funded by Spanish MINECO, grant number BIA2017‐82391‐R which is co‐funded by FEDER. We thank Marc Malfois for his help during the experiment performed at NCD‐SWEET beamline at ALBA synchrotron. We also thank Marcus Paul (Dyckerhoff GmbH) for providing the OWC sample with its characterization and helpful discussions

    Synchrotron Radiation Pair Distribution Function Analysis of Gels in Cements

    Get PDF
    The analysis of atomic ordering in a nanocrystalline phase with small particle sizes, below 5 nm, is intrinsically complicated because of the lack of long-range order. Furthermore, the presence of additional crystalline phase(s) may exacerbate the problem, as is the case in cement pastes. Here, we use the synchrotron pair distribution function (PDF) chiefly to characterize the local atomic order of the nanocrystalline phases, gels, in cement pastes. We have used a multi r-range analysis approach, where the ~4–7 nm r-range allows determining the crystalline phase contents; the ~1–2.5 nm r-range is used to characterize the atomic ordering in the nanocrystalline component; and the ~0.2–1.0 nm r-range gives insights about additional amorphous components. Specifically, we have prepared four alite pastes with variable water contents, and the analyses showed that a defective tobermorite, Ca11Si9O28(OH)2 8.5H2O, gave the best fit. Furthermore, the PDF analyses suggest that the calcium silicate hydrate gel is composed of this tobermorite and amorphous calcium hydroxide. Finally, this approach has been used to study alternative cements. The hydration of monocalcium aluminate and ye’elimite pastes yield aluminum hydroxide gels. PDF analyses show that these gels are constituted of nanocrystalline gibbsite, and the particle size can be as small as 2.5 nmThis work has been supported by Spanish MINECO through BIA2014-57658-C2-2-R, which is co-funded by FEDER, BIA2014-57658-C2-1-R and I3 (IEDI-2016-0079) grants. We also thank CELLS-ALBA (Barcelona, Spain) for providing synchrotron beam time at BL04-MSPD beamline. Finally, we thank Prof. Simon Billinge, Long Yang and Monica Dapiaggi for their help with the PDF script and simulations for Ca(OH)2 scattering dat

    Prediction of the lifespan of cement at a specific depth based on the coupling of geomechanical and geochemical processes for CO2 storage

    Get PDF
    The injection of carbon dioxide (CO2) captured from combustion-based processes into underground formations is one of a number of plausible methods to reduce its release into the atmosphere and consequential greenhouse gas warming. Once the gas has been captured efficiently and effectively, depleted oil and gas reservoirs are seen as high potential candidates for carbon storage projects. However, legacy issues associated with a high number of oil and gas wells abandoned during the last few decades put the carbon capture and storage projects (CCS) at risk. These include any defects within the cement surrounding the well casing or for capping an abandoned well that can become unwanted CO2 leakage pathways. To predict the lifespan of these cements due to exposure to CO2-bearing fluids at the conditions found underground, the geochemical processes need to be coupled with the geomechanical changes within the cement matrix. In a viable CCS project for sequestering CO2, the cement matrix should be capable of withstanding acidic environments formed by dissolution of CO2 in brine for more than ten thousand years. This work aims at providing a framework to predict the behaviour of cement due to CO2 exposure under reservoir conditions. The results show that the chemical reactions and geomechanical changes within the cement matrix can result either in its radial cracking or radial compaction. Both of these behaviours are investigated as possible phenomena which may affect the CO2 leakage, and therefore the viability of the site for long term carbon storage

    Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO2 sequestration

    Get PDF
    The industry of phosphoric acid produces a calcium-rich by-product known as phosphogypsum, which is usually stored in large stacks of millions of tons. Up to now, no commercial application has been widely implemented for its reuse because of the significant presence of potentially toxic contaminants. This work confirmed that up to 96% of the calcium of phosphogypsum could be recycled for CO2 mineral sequestration by a simple two-step process: alkaline dissolution and aqueous carbonation, under ambient pressure and temperature. This CO2 sequestration process based on recycling phosphogypsum wastes would help to mitigate greenhouse gasses emissions. Yet this work goes beyond the validation of the sequestration procedure; it tracks the contaminants, such as trace metals or radionuclides, during the recycling process in the phosphogypsum. Thus, most of the contaminants were transferred from raw phosphogypsum to portlandite, obtained by dissolution of the phosphogypsum in soda, and from portlandite to calcite during aqueous carbonation. These findings provide valuable information for managing phosphogypsum wastes and designing potential technological applications of the by-products of this environmentally-friendly proposal.Junta de Andalucía P10-RNM-6300, P12- RNM-226

    Microstructural study of Styrene Polyacrylic (SPA) latex modified mortars

    Get PDF
    In this paper, the influence of the styrene polyacrylic (SPA) latex polymer on the microstructural properties of limestone mortars has been studied. For this purpose, five mortars were developed with different dosages of the SPA latex (0%, 2.5%, 5%, 7.5% and 10%) by weight of cement. This research was carried out using XRD, FTIR, and SEM analyses. The results of XRD and FTIR studies showed that the addition of SPA latex can increase the portlandite content of polymer-modified mortars (PMMs), compared to the control mortar. In addition, the moist environment promotes the Ca(OH)2 consumption in PMMs at early age and accelerates the hydration. Moreover, the SEM analysis revealed that the cement hydrate structure of the reference mortar is loose. In contrast, the hydrates of the PMMs were covered by a polymer film or membrane, and the pore structure is significantly affected by the filling effect the micropores by the latex particles

    Diffusion-reaction modelling of the degradation of oil-well cement exposed to carbonated brine

    Get PDF
    The essential aspects of a diffusion-reaction model in development for the degradation process of oil-well cement exposed to carbonated brine are presented in this paper. The formulation consists of two main diffusion/reaction field equations for the concentrations of aqueous calcium and carbon species in the hardened cement paste pore solution, complemented by a number of chemical kinetics and chemical equilibrium equations. The volume fraction distribution of the solid constituents of the hardened cement paste and the reaction products evolve with the progress of the reaction, determining the diffusivity properties of the material. A sensitivity analysis of some parameters of the model is presented to illustrate the capabilities to reproduce realistically some aspects of the degradation process.The essential aspects of a diffusion-reaction model in development for the degradation process of oil-well cement exposed to carbonated brine are presented in this paper. The formulation consists of two main diffusion/reaction field equations for the concentrations of aqueous calcium and carbon species in the hardened cement paste pore solution, complemented by a number of chemical kinetics and chemical equilibrium equations. The volume fraction distribution of the solid constituents of the hardened cement paste and the reaction products evolve with the progress of the reaction, determining the diffusivity properties of the material. A sensitivity analysis of some parameters of the model is presented to illustrate the capabilities to reproduce realistically some aspects of the degradation process

    Diffusion-reaction model for alkali-silica reaction in concrete

    Get PDF
    A new diffusion-reaction model for the potentially deleterious Alkali-Silica Reaction (ASR) process in concrete is presented. The model involves three coupled diffusion processes, two in-goingand one out-goingfrom the aggregate viewpoint. Alkali (Na+ and K+) and Calcium (Ca2+) ions diffuse “inwards”, from high molar concentration sites in the pores of the cement paste phase of the concrete specimen or at its boundaries, towards the aggregate-cement paste interfaces or the inner cracks of the aggregates. The OH- ions associated with alkali and calcium ions attack certain forms of silica in the aggregates (the “reactive silica”), dissolving it in the form of silicate ions which in turn diffuse back to the cement paste phase (“outwards”). The final potentially deleterious ASR precipitation process involves those silicate ions, plus calcium and alkalis. It takes place wherever the reactants are available by precipitating silicate hydrates of two kinds (Calcium-Silicate-Hydrates –CSH or Calcium-Alkali-Silicate-Hydrates –CASH) in a proportion depending on concentrations and temperature. The diffusion-reaction equations of this process are discretized in space and time using finite differences. An example of application in 1D is presented to illustrate the capabilities to reproduce realistically the ASR process, including some novel features not usually which are not considered in the available literature, such as the role of calcium in the development of the reaction and the inherent relationship between the reaction product composition and its swelling capacity

    Diffusion-reaction modelling of the degradation of oil-well cement exposed to carbonated brine

    Get PDF
    The essential aspects of a diffusion-reaction model in development for the degradation process of oil-well cement exposed to carbonated brine are presented in this paper. The formulation consists of two main diffusion/reaction field equations for the concentrations of aqueous calcium and carbon species in the hardened cement paste pore solution, complemented by a number of chemical kinetics and chemical equilibrium equations. The volume fraction distribution of the solid constituents of the hardened cement paste and the reaction products evolve with the progress of the reaction, determining the diffusivity properties of the material. A sensitivity analysis of some parameters of the model is presented to illustrate the capabilities to reproduce realistically some aspects of the degradation process.The essential aspects of a diffusion-reaction model in development for the degradation process of oil-well cement exposed to carbonated brine are presented in this paper. The formulation consists of two main diffusion/reaction field equations for the concentrations of aqueous calcium and carbon species in the hardened cement paste pore solution, complemented by a number of chemical kinetics and chemical equilibrium equations. The volume fraction distribution of the solid constituents of the hardened cement paste and the reaction products evolve with the progress of the reaction, determining the diffusivity properties of the material. A sensitivity analysis of some parameters of the model is presented to illustrate the capabilities to reproduce realistically some aspects of the degradation process

    Diffusion-reaction modelling of the degradation of oil-well cement exposed to carbonated brine

    Get PDF
    The essential aspects of a diffusion-reaction model in development for the degradation process of oil-well cement exposed to carbonated brine are presented in this paper. The formulation consists of two main diffusion/reaction field equations for the concentrations of aqueous calcium and carbon species in the hardened cement paste pore solution, complemented by a number of chemical kinetics and chemical equilibrium equations. The volume fraction distribution of the solid constituents of the hardened cement paste and the reaction products evolve with the progress of the reaction, determining the diffusivity properties of the material. A sensitivity analysis of some parameters of the model is presented to illustrate the capabilities to reproduce realistically some aspects of the degradation process.The essential aspects of a diffusion-reaction model in development for the degradation process of oil-well cement exposed to carbonated brine are presented in this paper. The formulation consists of two main diffusion/reaction field equations for the concentrations of aqueous calcium and carbon species in the hardened cement paste pore solution, complemented by a number of chemical kinetics and chemical equilibrium equations. The volume fraction distribution of the solid constituents of the hardened cement paste and the reaction products evolve with the progress of the reaction, determining the diffusivity properties of the material. A sensitivity analysis of some parameters of the model is presented to illustrate the capabilities to reproduce realistically some aspects of the degradation process
    corecore