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Abstract. A new diffusion-reaction model for the potentially deleterious Alkali-Silica 
Reaction (ASR) process in concrete is presented. The model involves three coupled diffusion 
processes, two in-going and one out-going from the aggregate viewpoint. Alkali (Na+ and K+)
and Calcium (Ca2+) ions diffuse “inwards”, from high molar concentration sites in the pores 
of the cement paste phase of the concrete specimen or at its boundaries, towards the 
aggregate-cement paste interfaces or the inner cracks of the aggregates. The OH- ions 
associated with alkali and calcium ions attack certain forms of silica in the aggregates (the 
“reactive silica”), dissolving it in the form of silicate ions which in turn diffuse back to the 
cement paste phase (“outwards”). The final potentially deleterious ASR precipitation process 
involves those silicate ions, plus calcium and alkalis. It takes place wherever the reactants are 
available by precipitating silicate hydrates of two kinds (Calcium-Silicate-Hydrates –CSH or 
Calcium-Alkali-Silicate-Hydrates –CASH) in a proportion depending on concentrations and 
temperature. The diffusion-reaction equations of this process are discretized in space and time 
using finite differences. An example of application in 1D is presented to illustrate the 
capabilities to reproduce realistically the ASR process, including  some novel features not 
usually which are not considered in the available literature, such as the role of calcium in the 
development of the reaction and the inherent relationship between the reaction product 
composition and its swelling capacity.

1 INTRODUCTION
Expansion due to Alkali Silica Reaction (ASR) is the second most common cause of 

concrete deterioration, after reinforcement corrosion. First reported by Stanton in 1940 [1], its
reaction-expansion mechanism is not yet fully understood. It is accepted that certain types of 
metastable silica present in aggregates are attacked by hydroxyl ions in concrete pore solution 
producing its dissolution into silicate ions. These ions recombine with alkalis and calcium 
ions in an expansive reaction forming a Calcium-Alkali-Silicate-Hydrates (CASH) of variable 
stoichiometry, molar volume and mechanical properties. It is a complex phenomenon that 
strongly depends on the dosage and composition of the concrete, as well as on its temperature 
and capillary pore humidity.

ASR products are found filling pores and cracks both in the hydrated cement paste (HCP)
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and the aggregates of concrete. However, the most expansive ASR products seem to be those 
with low content of calcium, formed in aggregate cracks or pockets were calcium from the 
HCP is less available. On the other hand, the presence of calcium appears to be essential for 
concrete expansion [2], as Portlandite (𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2) in the HCP acts as a buffer to maintain the
𝑂𝑂𝐻𝐻− concentration in the pore solution at high values, therefore allowing further dissolution 
of the reactive silica [3].

Some chemo-mechanical simulations of ASR have been reported in the last fifteen years 
[4, 5, 6]. To the best of the authors’ knowledge, only Poyet et al. [7] have considered the role
of portlandite and calcium ions diffusion in the development of ASR. However, they have 
neglected the silicate ions diffusion by assuming that the ASR products only precipitate in the 
interfacial transition zone surrounding the reactive aggregate.

In this paper, diffusion-reaction model currently under development is presented. It 
includes three diffusion processes: alkali and calcium ions, mainly from the HCP into the 
aggregate, and silicate ions, mainly from the aggregates towards the HCP. The main objective 
is to reproduce realistically some aspects of ASR which are not considered in the available 
models, such as the role of calcium in the development of the reaction and the inherent 
relationship between the reaction product composition and its swelling capacity. For the sake 
of simplicity, constant temperature and full water saturation of concrete are assumed at this 
stage of the formulation development. For validation purposes, the model has been 
implemented in 1D and compared with experimental results of free expansion tests at the 
level of a single cement-aggregate interface taken from an ongoing experimental campaign 
within the same study. 

2 DESCRIPTION OF THE CHEMO-TRANSPORT MODEL

2.1 Chemical reactions involved 
Chemical reactions leading to ASR expansions occur in the pore water of the cement paste 

and aggregate phases in concrete. When pore solution of usually high pH is in contact with 
metastable silica present in the aggregate, an acid-base reaction takes place, leading to the 
dissolution of the silica into silicate ions [8]. This reaction involves the progressive 
dissociation of the silicate ions, and can be expressed in a simplified way [9] as:

𝑆𝑆𝑆𝑆𝑂𝑂2,𝐻𝐻2𝑂𝑂(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.) + 𝑂𝑂𝐻𝐻− → 𝑆𝑆𝑆𝑆𝑂𝑂4𝐻𝐻3−(𝑎𝑎𝑎𝑎) (1)

Once in the pore solution, the silicate ions react with calcium and alkali ions forming a 
Calcium-Alkali-Silicate-Hydrate gel (CASH) of variable stoichiometry depending on the 
relative concentration of the reactants [10, 11]. The variability of the stoichiometry seems to 
be an important issue, since a clear dependence of the molar volume and the mechanical 
properties of the CASH on its composition, particularly with the Calcium to silica ratio has 
been reported [11, 12]. In order to include this effect, the model considers the following two 
simultaneous reactions, one (2) forming a Calcium- Silicate – Hydrate (CSH) and the other 
(3) forming a Calcium-Alkali-Silicate-Hydrate (CASH), where 𝛼𝛼1, 𝛼𝛼3, 𝛼𝛼4 and 𝛽𝛽2, 𝛽𝛽3, 𝛽𝛽4 are 
stoichiometric coefficients to be fit with experimental data. The overall product of the 
reaction is dependent on the kinetics of CASH and CSH formation.
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𝑆𝑆𝑆𝑆𝑂𝑂4𝐻𝐻3− + 𝛼𝛼1𝐶𝐶𝐶𝐶2+ + 𝛼𝛼3𝑂𝑂𝐻𝐻− + 𝛼𝛼4𝐻𝐻2𝑂𝑂 → 𝐶𝐶𝛼𝛼1𝑆𝑆𝑆𝑆1+𝛼𝛼1+𝛼𝛼4  𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝛼𝛼3 = 2𝛼𝛼1 − 1 𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼1 >
1
2

 (2)

𝑆𝑆𝑆𝑆𝑂𝑂4𝐻𝐻3− + 𝛽𝛽2𝐴𝐴+ + 𝛽𝛽3𝑂𝑂𝐻𝐻− + 𝛽𝛽4𝐻𝐻2𝑂𝑂 → 𝐴𝐴𝛽𝛽
2
𝑆𝑆𝑆𝑆

1+𝛽𝛽22 +𝛽𝛽4
𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝛽𝛽3 = 𝛽𝛽2 − 1 𝑎𝑎𝑎𝑎𝑎𝑎   𝑓𝑓𝑓𝑓𝑓𝑓 𝛽𝛽2 > 1 (3)

The prediction of the chemical composition of concrete pore water is a very complex 
problem [13]. However, in this study cement pore water is assumed to be a solution of 𝑁𝑁𝑎𝑎+,
𝐾𝐾+, 𝐶𝐶𝑎𝑎2+ and 𝑂𝑂𝐻𝐻− ions, where portlandite (𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2) solubility controls 𝐶𝐶𝑎𝑎2+
concentrations [14]. Since 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and  𝐾𝐾𝐾𝐾𝐾𝐾 are strong bases, it can be assumed that all of it is 
dissociated, i.e. no solid 𝑁𝑁𝑎𝑎𝑂𝑂𝑂𝑂 or 𝐾𝐾𝐾𝐾𝐾𝐾 is in contact with the pore solution. Finally, only two 
dissociation reactions are considered: water self-ionization (4) and portlandite dissociation
(5).

𝐻𝐻2𝑂𝑂 + 𝐻𝐻2𝑂𝑂 ↔ 𝑂𝑂𝐻𝐻− + H3O+ (4)

𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2 ↔ 𝐶𝐶𝑎𝑎2+ + 2(𝑂𝑂𝑂𝑂)− (5)

Since 𝑁𝑁𝑎𝑎+ and  𝐾𝐾+ have similar effects on ASR, henceforth they are called generically
𝐴𝐴+.

2.2 Transport processes
The preceding chemical reactions take place according to the availability of reactants in 

time and space which is basically determined by transport processes. In this model, only the 
diffusion of Ca2+, A+ and  SiO4H3

− are explicitly modeled. The OH− and OH3
+ concentrations 

are obtained at each location by means of the chemical equilibrium equations above 
mentioned. These diffusion processes are formulated by means of Fick’s second law, which is 
expressed in 1D for ion SiO4H3

− in equation (6), where 𝑠𝑠− �𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚3 � is the ion concentration, 
𝐷𝐷𝑠𝑠 [𝑚𝑚2/ℎ] is the overall diffusion coefficient (see section 2.3) and  𝑠̇𝑠−[𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚3 · ℎ)⁄ ] is a 
well/sink term which accounts for the net production or consumption due to chemical 
processes of the ionic species 𝑠𝑠−.

𝜕𝜕𝑠𝑠−

𝜕𝜕𝜕𝜕
=

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐷𝐷𝑠𝑠 𝜕𝜕𝑠𝑠
−

𝜕𝜕𝜕𝜕
� +  𝑠̇𝑠−    (6)

Similar equations are assumed for ions 𝐶𝐶𝐶𝐶2+ (concentration 𝑐𝑐2+) and 𝐴𝐴+ (concentration 
𝑎𝑎+). The notation used for the independent variables is also stated in Table 1.

2.3 Volume fractions of solid components
During the development of the reaction the volume fractions of the solid components in the 

material are not constant. Portlandite and reactive silica are progressively dissolved reducing 
their volumes and increasing the capillary porosity of the material. The CASH formed 
occupies this empty volume, leading to a net volumetric expansion when the volume of 
CASH produced exceeds the available pore space.

Eight different solid components are considered in this model: 
1) Impervious remnant: comprises impervious and inert constituents in HCP and aggregate. 
There is no diffusion through it and it does not experiment any volume change.
2) Capillary pores
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3) Reactive silica
4) Portlandite
5) Reaction product (CSH): product of reaction (2),
6) Reaction product (CASH): product of reaction (3)
7) Inert cement hydration products: comprises cement paste constituents that do not take 
part in the reactions above mentioned. It does not experiment any volume change due to 
ASR.
8) Inert aggregate constituents: comprises aggregate constituents that do not take part in 
the reactions above mentioned. It does not experience any volume change due to ASR.
Components 1, 2, 4 and 7 are initially present in the HCP. Components 1, 2, and 8 are 

initially present in the aggregates. Components 5 and 6 precipitate both in the HCP and in the 
aggregates as the reaction takes place.  

At a given location in space x, the volume fraction of each component k is represented by a 
variable 𝑢𝑢𝑘𝑘(𝑥𝑥), so that the total volume V(x) is given by equation (7).

𝑉𝑉(𝑥𝑥) = �𝑢𝑢𝑘𝑘(𝑥𝑥)
8

𝑘𝑘=1

 (7)

The volume fractions 𝑢𝑢𝑘𝑘(𝑥𝑥) are calculated from the concentration variables by means of 
equations (8), (9) and (10), where 𝑣𝑣𝑘𝑘 is the molar volume and 𝑐𝑐𝑘𝑘(𝑥𝑥) is the concentration of 
the chemical species associated to the component 𝑘𝑘 (e.g. for portlandite 𝑘𝑘 = 4, 𝑐𝑐4 = 𝑐𝑐0). The 
superindex 0 applied to 𝑢𝑢𝑘𝑘(𝑥𝑥) stands for initial value.

𝑢𝑢𝑘𝑘(𝑥𝑥) = 𝑢𝑢𝑘𝑘0(𝑥𝑥)       𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 1,7,8  (8)

𝑢𝑢2(𝑥𝑥) =  max �0 ;  𝑢𝑢20(𝑥𝑥) −�[𝑢𝑢𝑘𝑘(𝑥𝑥) − 𝑢𝑢𝑘𝑘0(𝑥𝑥)]
6

𝑘𝑘=2

� (9)

𝑢𝑢𝑘𝑘(𝑥𝑥) = 𝑣𝑣𝑘𝑘 · 𝑐𝑐𝑘𝑘(𝑥𝑥) · 𝑉𝑉𝑝𝑝𝑝𝑝(𝑥𝑥)      𝑓𝑓𝑓𝑓𝑓𝑓  𝑘𝑘 = 3,4,5,6 (10)

The volumetric distribution of the solid components in each location determines the 
volume of pore solution 𝑉𝑉𝑝𝑝𝑝𝑝(𝑥𝑥) in it by equation (11) and its overall diffusion coefficients by 
equation (12) ( similar equations are posed for 𝐷𝐷𝑎𝑎(𝑥𝑥) and 𝐷𝐷𝑠𝑠(𝑥𝑥)) where  𝜑𝜑𝑘𝑘 and 𝑑𝑑𝑘𝑘 are the 
intrinsic porosity and the diffusion coefficient of phase k, and 𝑚𝑚𝑠𝑠 is a coefficients that 
introduces the effect of the ion type (electric charge, ionic radius). The intrinsic porosity is 
defined as the volumetric fraction of the phase occupied with physically bonded water 
through which the diffusion-reaction process can happen.

𝑉𝑉𝑝𝑝𝑝𝑝(𝑥𝑥) = �𝑢𝑢𝑘𝑘(𝑥𝑥) · 𝜑𝜑(𝑘𝑘)
6

𝑘𝑘=1

(11)

𝐷𝐷𝑠𝑠(𝑥𝑥) =
𝑚𝑚𝑠𝑠

𝑉𝑉(𝑥𝑥)�𝑢𝑢𝑘𝑘(𝑥𝑥) · 𝑑𝑑𝑘𝑘  
8

𝑘𝑘=1

(12)

2.4 Chemical equations
The set of chemical reactions described in section 2.1 is divided in two groups depending 
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on their kinetics. The first group includes water self-ionization (4) and portlandite dissociation 
(5), reactions that can be assumed to occur instantaneously. The second group involves slower 
reactions for which kinetic laws need to be established such as silica dissolution (1) and 
CSH/CASH formation (2) and (3).

The equilibrium equations for the first group are:
𝐾𝐾𝑤𝑤 = {𝐻𝐻3𝑂𝑂+}{𝑂𝑂𝐻𝐻−} = 𝛾𝛾ℎ+ · 𝛾𝛾𝑜𝑜ℎ− · ℎ+ · 𝑜𝑜ℎ− (13)

𝐾𝐾3
𝑠𝑠𝑠𝑠 = {𝐶𝐶𝐶𝐶2+}{𝑂𝑂𝐻𝐻−}2 = 𝛾𝛾𝑐𝑐2+ · (𝛾𝛾𝑜𝑜ℎ−)2 · 𝑐𝑐2+ ·  (𝑜𝑜ℎ−)2 (14)

in which 𝐾𝐾𝑤𝑤 and 𝐾𝐾3
𝑠𝑠𝑠𝑠are constants, and activity coefficients 𝛾𝛾ℎ+, 𝛾𝛾𝑜𝑜ℎ− and 𝛾𝛾𝑐𝑐2+ are used 

instead of mere ion concentrations, for a more realistic representation. Activity coefficients 
are obtained from Davies equation (15), where 𝐴𝐴 is the Debye-Hückel parameter, 𝑧𝑧𝑛𝑛 is the
electric charge of the ion and 𝐼𝐼 is the ionic strength of the solution. The ionic strength is 
calculated from (16), where 𝑐𝑐𝑛𝑛 is the molar concentration of the ion species n.

log10 𝛾𝛾𝑛𝑛 = − 𝐴𝐴𝑧𝑧𝑛𝑛2 �
√𝐼𝐼

1 + √𝐼𝐼
− 0.2𝐼𝐼�  (15)

𝐼𝐼 =
1
2
�𝑐𝑐𝑛𝑛|𝑧𝑧𝑛𝑛|2
𝑛𝑛

 (16)

Davies equation gives realistic values of activity coefficients for I<0.50. For greater ionic 
strength other method should be used (p.e. Pitzer equations). However, for the sake of 
simplicity, Davies Equation is used in the full range of ionic strength, even over 0.50.

Additionally, electric charge balance (17) and calcium mass balance equations (18) need to
be considered to obtain the equilibrium composition of the pore solution.

�𝑐𝑐𝑛𝑛𝑧𝑧𝑖𝑖
𝑖𝑖

= 0 (17)

𝑐𝑐2+ + 𝑐𝑐0 − 𝑐𝑐02+ − 𝑐𝑐00 = 0 (18)

For the second group of reactions, kinetics laws of order zero are assumed for silica 
dissolution (19), CSH formation (20) and CASH formation (21), where 𝑘𝑘1, 𝑘𝑘4, 𝑘𝑘5 are kinetic
constants. In equation (19), a term has been added to limit the silica dissolution to its 
saturation product 𝐾𝐾1

𝑠𝑠𝑠𝑠. In turn, if oversaturation is reached, this term allows silica 
precipitation.

𝜕𝜕𝑠𝑠−

𝜕𝜕𝜕𝜕
= 𝑘𝑘1 · 𝑠𝑠0 · 𝑠𝑠− · �1 −

𝑠𝑠−

𝑜𝑜ℎ− · 𝐾𝐾1
𝑠𝑠𝑠𝑠� (19)

𝜕𝜕𝑐𝑐𝑐𝑐ℎ
𝜕𝜕𝜕𝜕

= 𝑘𝑘4 · 𝑠𝑠− · (𝑐𝑐2+)𝛼𝛼1 · (𝑜𝑜ℎ−)𝛼𝛼3  (20)

𝜕𝜕𝑐𝑐𝑐𝑐𝑐𝑐ℎ
𝜕𝜕𝜕𝜕

= 𝑘𝑘5 · 𝑠𝑠− · (𝑎𝑎+)𝛽𝛽2 · (𝑜𝑜ℎ−)𝛽𝛽3 (21)

The amount of reaction products and the pore solution composition for a given time 
interval is obtained by posing the mass balance equations for 𝑠𝑠0, 𝑠𝑠−, 𝑐𝑐2+, 𝑎𝑎+ and 𝑜𝑜ℎ−. The 
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notation used for the independent variables is also stated in Table 1.

Table 1: Summary of independent calculation variables.

Notation Units Description Notes

𝑠𝑠0, 𝑆𝑆0 − Molar concentration of reactive silica SiO2 (a), (c)

𝑐𝑐0,𝐶𝐶0 − Molar concentration of Portlandite Ca(OH)2 (a), (c)

𝑠𝑠− − Molar concentration of silicate ions 𝑆𝑆𝑆𝑆𝑂𝑂4𝐻𝐻3− (b), (d)

𝑐𝑐2+ − Molar concentration of calcium ions 𝐶𝐶𝐶𝐶2+ (b), (d)

𝑎𝑎+ − Molar concentration of alkali ions 𝑁𝑁𝑎𝑎+ and 𝐾𝐾+ (b), (d)

𝑜𝑜ℎ− − Molar concentration of hydroxyl ions 𝑂𝑂𝐻𝐻− (b), (d)

ℎ+ − Molar concentration of hydroxyl ions 𝐻𝐻+ (b), (c)

Notes: (a) Solid species, expressed in terms of pore solution volume (low case) and in terms of initial unitary 
volume of concrete (upper case). (b) Species in solution, expressed in terms of pore solution volume. (c) Local 
variable (d) Field variable.

3 SUMMARY OF EQUATIONS AND NUMERICAL IMPLEMENTATION
In sum, the overall system of unknowns and equations to be solved in the ASR model 

proposed is the following:
- Three equations of diffusion/reaction (6) for c2+, 𝑎𝑎+and s−. They are the only 

field variables of the problem.
- For each point in space, the sink/well terms of Eqns. (6) and local concentration

variables (𝑜𝑜ℎ−, ℎ+, 𝑐𝑐0, 𝑠𝑠0, 𝑐𝑐𝑐𝑐ℎ, 𝑐𝑐𝑐𝑐𝑐𝑐ℎ) are calculated by means of:
o Four Chemical Equilibrium equations 

 Electric charge balance equation (17)
 Water dissociation equilibrium equation (13)
 Saturation product of Portlandite dissolution (14)
 Molar mass balance of portlandite dissolution (18)

o Three Chemical Kinetic equations
 Silica dissolution (19)
 CSH formation (20)
 CASH Formation (21)

Additionally, the overall diffusion coefficients 𝐷𝐷𝑎𝑎(𝑥𝑥), 𝐷𝐷𝑐𝑐(𝑥𝑥), 𝐷𝐷𝑠𝑠(𝑥𝑥) and the pore solution 
volume 𝑉𝑉𝑝𝑝𝑝𝑝(𝑥𝑥) are related to the volume fractions 𝑢𝑢𝑘𝑘(𝑥𝑥) by equations (11, 12), as well as the 
volume fractions 𝑢𝑢𝑘𝑘(𝑥𝑥) are related to the local concentration variables 𝑐𝑐0, 𝑠𝑠0, 𝑐𝑐𝑐𝑐ℎ and 𝑐𝑐𝑐𝑐𝑐𝑐ℎ
by equations (8, 9,10).
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The solution scheme implemented is as follow:
- Time is discretized in ∆𝑡𝑡 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗
- Space is discretized in segments of variable length   Δ𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖
- For each time step, the initial concentrations 𝐶𝐶𝑛𝑛(𝑥𝑥𝑖𝑖) (expressed in relation to the initial 

unit volume) and volume fractions 𝑢𝑢𝑘𝑘(𝑥𝑥𝑖𝑖) at each point 𝑥𝑥𝑖𝑖 are known.
- With the volume fractions 𝑢𝑢𝑘𝑘(𝑥𝑥𝑖𝑖), the diffusion coefficients 𝐷𝐷𝑛𝑛(𝑥𝑥𝑖𝑖) and pore solution 

volumes 𝑉𝑉𝑝𝑝𝑝𝑝(𝑥𝑥𝑖𝑖) are calculated by equations (11, 12).
- Concentrations are expressed in terms of pore solution volume by means of

𝑐𝑐𝑛𝑛(𝑥𝑥𝑖𝑖) = 𝐶𝐶𝑛𝑛(𝑥𝑥𝑖𝑖) 𝑉𝑉𝑝𝑝𝑝𝑝(𝑥𝑥𝑖𝑖)⁄
- Time derivatives of Eqns. (6) are evaluated at 𝑡𝑡 = 𝑡𝑡𝑗𝑗 by the explicit finite difference 

method. Sink/well terms of Eqns. (6) are obtained by combining the equilibrium
equations (13, 14, 17, 18) and the kinetics equations (19, 20, 21). The equilibrium 
equations are established at 𝑡𝑡 = 𝑡𝑡𝑗𝑗+1, while the kinetics equations are discretized in ∆𝑡𝑡
by a mid-point integration scheme

- The resulting equation system for concentrations at time 𝑡𝑡 = 𝑡𝑡𝑗𝑗+1 is solved by means 
of Newton-Raphson method.  

- Concentrations at 𝑡𝑡 = 𝑡𝑡𝑗𝑗+1 are saved for the next time step.

4 1D SIMULATIONS
In order to validate the reaction mechanism proposed, an ongoing experimental test similar 

to the one proposed by Schlangen and Çopuroglu [15] is simulated. The test has been set up to 
measure ASR expansions at the level of single interfase between HCP and aggregate. 
Cylindrical specimens of 33 mm of diameter and 64 mm of height, with a borosilicate glass 
disc in the middle as reactive aggregate and HCP in the extremes (see Figure 1, left) are 
exposed to a 1M NaOH solution at 60ºC for a period of 14 days during which expansions are 
measured regularly. 

Figure 1: Experimental ASR expansion test at the level of a single aggregate-HCP interface: specimen after 
14 days imersion in 1M NaOH solution at 60ºC (left image), and length change from experiment (circles) and 

model (line) (right diagram).
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The geometry and discretization for the 1D numerical analysis are is shown in Figure 2. A 
total of 200 nodes were used with a constant separation of 5.0E-06m. The boundary and 
initial conditions as well as the parameters and coefficients used in the simulations are 
summarized in Tables 2, 3 and 4. A symmetric boundary condition is imposed on the right 
end.

Figure 2: Model geometry and discretization (not represented at exact scale).

Table 2: Constants and coefficients used in the simulation.

𝐾𝐾𝑤𝑤 9.43E-14 𝑘𝑘1 2.00E+02 𝑚𝑚𝑐𝑐 0.75 𝛼𝛼1 0.50

𝐾𝐾1
𝑠𝑠𝑠𝑠 1.00E+05 𝑘𝑘4 2.00E+03 𝑚𝑚𝑐𝑐 1.25 𝛼𝛼2 0.00

𝐾𝐾3
𝑠𝑠𝑠𝑠 4.60E-06 𝑘𝑘5 2.00E+00 𝑚𝑚𝑠𝑠 1.00 𝛽𝛽1 1.00

A 5.49E-01 𝛽𝛽2 0.00

Table 3: Intrinsic properties of the solid phases (SP).

Unit SP 1 SP 2 SP 3 SP 4 SP 5 SP 6 SP 7-8

𝒅𝒅𝒌𝒌 m2/h 0.00E+00 1.00E-07 1.00E-12 1.00E-11 1.00E-09 1.00E-09 1.00E-11

𝝋𝝋𝒌𝒌 -- 1.00E-01 1.00E+00 0.00E+00 1.00E-03 1.00E-01 1.00E-01 1.00E-01

𝒗𝒗𝒌𝒌 10-3m3/mol N/A N/A 2.87E-02 3.32E-02 5.68E-02 8.56E-02 N/A

Table 4: Initial conditions

u2 𝑺𝑺𝟎𝟎 𝑺𝑺− 𝑪𝑪𝟎𝟎 𝑪𝑪𝟐𝟐+ 𝑨𝑨+

Unit m3/m3 103 mol/m3 103 mol/m3 103 mol/m3 103 mol/m3 103 mol/m3

HCP 0.18 1.00E+00 0.00E+00 3.3800E+00 1.93E-06 4.43E-01

GLASS 0.00 2.78E+01 0.00E+00 0.0000E+00 0.0000E+00 0.00E+00

Left boundary 0.18 0.00E+00 0.00E+00 3.3800E+00 1.93E-06 4.43E-01

0.40mm 0.20 mm

0 1 … …

HCP GLASS

159    160    161    162 199     200
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The overall expansion curve obtained with the model is plotted together with the 
experimental results in Figure 1. The main trend of experimental behavior is caught by the 
model.

The volumetric solid phase distribution in the area near the HCP-glass interface, for 
different exposure times, is represented in Figure 3. There, the progressive glass and 
portlandite depletion near the interface becomes apparent, as well as the CASH precipitation, 
first filling the capillary pores and finally producing a volumetric expansion. 

Figure 3: Volumetric solid phase distribution in the interface zone of HCP-glass for different exposure times.
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4 CONCLUDING REMARKS
The model proposed is capable of qualitatively reproducing several aspects of the ASR 

expansion, the main ones of which:
- Calcium enrichment of the ASR product.
- Experimental expansion curves at the level of a single HCP- glass interface.
- The effect of calcium availability on the silica dissolution and development of 

expansions.
- Free expansion curves at the level of a single interface.
- The effect of calcium and silica dissolution and the ASR products precipitation on the  

overall diffusivity coefficient
Some aspects object of on-going development improvement:
- The effect of sulfate ions in the composition of pore solution at high temperatures.
- Second order effect on diffusion due to volumetric expansion.
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