56,097 research outputs found

    Implementing a Portable Clinical NLP System with a Common Data Model - a Lisp Perspective

    Full text link
    This paper presents a Lisp architecture for a portable NLP system, termed LAPNLP, for processing clinical notes. LAPNLP integrates multiple standard, customized and in-house developed NLP tools. Our system facilitates portability across different institutions and data systems by incorporating an enriched Common Data Model (CDM) to standardize necessary data elements. It utilizes UMLS to perform domain adaptation when integrating generic domain NLP tools. It also features stand-off annotations that are specified by positional reference to the original document. We built an interval tree based search engine to efficiently query and retrieve the stand-off annotations by specifying positional requirements. We also developed a utility to convert an inline annotation format to stand-off annotations to enable the reuse of clinical text datasets with inline annotations. We experimented with our system on several NLP facilitated tasks including computational phenotyping for lymphoma patients and semantic relation extraction for clinical notes. These experiments showcased the broader applicability and utility of LAPNLP.Comment: 6 pages, accepted by IEEE BIBM 2018 as regular pape

    Automatic mapping of concrete strength in structural element

    Get PDF
    Collapses of structure under construction can be prevented if quality control is practiced at sites. The strength uniformity of reinforced concrete structure element cast on site depends on the level of compaction of the fresh concrete. The whole element should be checked and mapped so that localized defect can be detected and removal of formwork can be stopped if applicable. A portable and quick way to check and map the uniformity and the strength of concrete has been developed utilizing the use of pressure wave and signal processing techniques. An echo is introduced to the sample by dropping a small steel ball from a certain height from the concrete surface. The impact generates stress wave, which propagate through the concrete. The accelerometer receives the wave and changes the display from time to frequency domain. The highest observed frequency is determined as the depth frequency. The velocity is calculated as CP = 2fD. Hundreds of specimens were tested. The relationship between the strength and the velocity is correlated. From correlation equation, the strength of concrete can be estimated within 10% error (Hamid et al, 2004). The mapping process is done automatically in computer-generated program. Signal-processing techniques were used to compute the data; Fourier Transform to translate a time-series signal into frequency domain, concrete strength calculation, interpolation technique and a Graphic User Interface (GUI) to complete the mapping algorithms

    First Ex-Vivo Validation of a Radioguided Surgery Technique with beta- Radiation

    Full text link
    Purpose: A radio-guided surgery technique with beta- -emitting radio-tracers was suggested to overcome the effect of the large penetration of gamma radiation. The feasibility studies in the case of brain tumors and abdominal neuro-endocrine tumors were based on simulations starting from PET images with several underlying assumptions. This paper reports, as proof-of-principle of this technique, an ex-vivo test on a meningioma patient. This test allowed to validate the whole chain, from the evaluation of the SUV of the tumor, to the assumptions on the bio-distribution and the signal detection. Methods: A patient affected by meningioma was administered 300 MBq of 90Y-DOTATOC. Several samples extracted from the meningioma and the nearby Dura Mater were analyzed with a beta- probe designed specifically for this radio-guided surgery technique. The observed signals were compared both with the evaluation from the histology and with the Monte Carlo simulation. Results: we obtained a large signal on the bulk tumor (105 cps) and a significant signal on residuals of \sim0.2 ml (28 cps). We also show that simulations predict correctly the observed yields and this allows us to estimate that the healthy tissues would return negligible signals (~1 cps). This test also demonstrated that the exposure of the medical staff is negligible and that among the biological wastes only urine has a significant activity. Conclusions: This proof-of-principle test on a patient assessed that the technique is feasible with negligible background to medical personnel and confirmed that the expectations obtained with Monte Carlo simulations starting from diagnostic PET images are correct.Comment: 17 pages, 4 Figs, Accepted by Physica Medic

    Seconds-scale coherence in a tweezer-array optical clock

    Get PDF
    Optical clocks based on atoms and ions achieve exceptional precision and accuracy, with applications to relativistic geodesy, tests of relativity, and searches for dark matter. Achieving such performance requires balancing competing desirable features, including a high particle number, isolation of atoms from collisions, insensitivity to motional effects, and high duty-cycle operation. Here we demonstrate a new platform based on arrays of ultracold strontium atoms confined within optical tweezers that realizes a novel combination of these features by providing a scalable platform for isolated atoms that can be interrogated multiple times. With this tweezer-array clock, we achieve greater than 3 second coherence times and record duty cycles up to 96%, as well as stability commensurate with leading platforms. By using optical tweezer arrays --- a proven platform for the controlled creation of entanglement through microscopic control --- this work further promises a new path toward combining entanglement enhanced sensitivities with the most precise optical clock transitions

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs
    corecore