2,222 research outputs found

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Taking advantage of hybrid systems for sparse direct solvers via task-based runtimes

    Get PDF
    The ongoing hardware evolution exhibits an escalation in the number, as well as in the heterogeneity, of computing resources. The pressure to maintain reasonable levels of performance and portability forces application developers to leave the traditional programming paradigms and explore alternative solutions. PaStiX is a parallel sparse direct solver, based on a dynamic scheduler for modern hierarchical manycore architectures. In this paper, we study the benefits and limits of replacing the highly specialized internal scheduler of the PaStiX solver with two generic runtime systems: PaRSEC and StarPU. The tasks graph of the factorization step is made available to the two runtimes, providing them the opportunity to process and optimize its traversal in order to maximize the algorithm efficiency for the targeted hardware platform. A comparative study of the performance of the PaStiX solver on top of its native internal scheduler, PaRSEC, and StarPU frameworks, on different execution environments, is performed. The analysis highlights that these generic task-based runtimes achieve comparable results to the application-optimized embedded scheduler on homogeneous platforms. Furthermore, they are able to significantly speed up the solver on heterogeneous environments by taking advantage of the accelerators while hiding the complexity of their efficient manipulation from the programmer.Comment: Heterogeneity in Computing Workshop (2014

    Investigation of LSTM Based Prediction for Dynamic Energy Management in Chip Multiprocessors

    Get PDF
    In this paper, we investigate the effectiveness of using long short-term memory (LSTM) instead of Kalman filtering to do prediction for the purpose of constructing dynamic energy management (DEM) algorithms in chip multi-processors (CMPs). Either of the two prediction methods is employed to estimate the workload in the next control period for each of the processor cores. These estimates are then used to select voltage-frequency (VF) pairs for each core of the CMP during the next control period as part of a dynamic voltage and frequency scaling (DVFS) technique. The objective of the DVFS technique is to reduce energy consumption under performance constraints that are set by the user. We conduct our investigation using a custom Sniper system simulation framework. Simulation results for 16 and 64 core network-on-chip based CMP architectures and using several benchmarks demonstrate that the LSTM is slightly better than Kalman filtering

    Investigation of LSTM Based Prediction for Dynamic Energy Management in Chip Multiprocessors

    Get PDF
    In this paper, we investigate the effectiveness of using long short-term memory (LSTM) instead of Kalman filtering to do prediction for the purpose of constructing dynamic energy management (DEM) algorithms in chip multi-processors (CMPs). Either of the two prediction methods is employed to estimate the workload in the next control period for each of the processor cores. These estimates are then used to select voltage-frequency (VF) pairs for each core of the CMP during the next control period as part of a dynamic voltage and frequency scaling (DVFS) technique. The objective of the DVFS technique is to reduce energy consumption under performance constraints that are set by the user. We conduct our investigation using a custom Sniper system simulation framework. Simulation results for 16 and 64 core network-on-chip based CMP architectures and using several benchmarks demonstrate that the LSTM is slightly better than Kalman filtering

    A Power-Aware Framework for Executing Streaming Programs on Networks-on-Chip

    Get PDF
    Nilesh Karavadara, Simon Folie, Michael Zolda, Vu Thien Nga Nguyen, Raimund Kirner, 'A Power-Aware Framework for Executing Streaming Programs on Networks-on-Chip'. Paper presented at the Int'l Workshop on Performance, Power and Predictability of Many-Core Embedded Systems (3PMCES'14), Dresden, Germany, 24-28 March 2014.Software developers are discovering that practices which have successfully served single-core platforms for decades do no longer work for multi-cores. Stream processing is a parallel execution model that is well-suited for architectures with multiple computational elements that are connected by a network. We propose a power-aware streaming execution layer for network-on-chip architectures that addresses the energy constraints of embedded devices. Our proof-of-concept implementation targets the Intel SCC processor, which connects 48 cores via a network-on- chip. We motivate our design decisions and describe the status of our implementation

    Effective runtime resource management using linux control groups with the BarbequeRTRM framework

    Get PDF
    The extremely high technology process reached by silicon manufacturing (smaller than 32nm) has led to production of computational platforms and SoC, featuring a considerable amount of resources. Whereas from one side such multi- and many-core platforms show growing performance capabilities, from the other side they are more and more affected by power, thermal, and reliability issues. Moreover, the increased computational capabilities allows congested usage scenarios with workloads subject to mixed and time-varying requirements. Effective usage of the resources should take into account both the application requirements and resources availability, with an arbiter, namely a resource manager in charge to solve the resource contention among demanding applications. Current operating systems (OS) have only a limited knowledge about application-specific behaviors and their time-varying requirements. Dedicated system interfaces to collect such inputs and forward them to the OS (e.g., its scheduler) are thus an interesting research area that aims at integrating the OS with an ad hoc resource manager. Such a component can exploit efficient low-level OS interfaces and mechanisms to extend its capabilities of controlling tasks and system resources. Because of the specific tasks and timings of a resource manager, this component can be easily and effectively developed as a user-space extension lying in between the OS and the controlled application. This article, which focuses on multicore Linux systems, shows a portable solution to enforce runtime resource management decisions based on the standard control groups framework. A burst and a mixed workload analysis, performed on a multicore-based NUMA platform, have reported some promising results both in terms of performance and power saving
    • …
    corecore