
A Power-Aware Framework for Executing Streaming Programs on
Networks-on-Chip ∗

Nilesh Karavadara, Simon Folie, Michael Zolda, Vu Thien Nga Nguyen, Raimund Kirner
School of Computer Science
University of Hertfordshire
Hatfield, United Kingdom

{n.k.karavadara, s.folie, m.zolda, v.t.nguyen, r.kirner}@herts.ac.uk

Abstract

Software developers are discovering that practices which
have successfully served single-core platforms for decades
do no longer work for multi-cores.

Stream processing is a parallel execution model that is
well-suited for architectures with multiple computational
elements that are connected by a network.

We propose a power-aware streaming execution layer
for network-on-chip architectures that addresses the energy
constraints of embedded devices.

Our proof-of-concept implementation targets the Intel
SCC processor, which connects 48 cores via a network-on-
chip. We motivate our design decisions and describe the
status of our implementation.

1 Introduction

Software developers are discovering that practices which
have successfully served single-core platforms for decades
do no longer work for multi-cores. Different software engi-
neering practices, programming paradigms, and execution
models are needed to get the best of performance out of
new parallel architectures, while obeying the energy con-
straints of embedded and the thermal constraints of high-
performance devices.

Dataflow programming [9] is a particularly promising
model for concurrent programming. Unlike most traditional
programming languages—which are centered around con-
trol flow—data flow languages expose concurrency directly

∗The research leading to these results has received funding from the
FP7 ARTEMIS-JU research project “ConstRaint and Application driven
Framework for Tailoring Embedded Real-time Systems” (CRAFTERS).
under contract no 295371. The research was further supported by the Ma-
terial Transfer Agreement 2010-2013 for the Intel SCC Research Processor
“Light-weight Parallel Execution Layer for Stream Processing Networks
on Distributed Memory Architectures”.

through explicit modelling of data dependencies. Coordina-
tion languages [3] allow software engineers to build parallel
applications from sequential building blocks. Stream pro-
cessing [14] is a parallel execution model that is well-suited
for architectures with multiple computational elements that
are connected by a network. Put together, these mechanisms
afford a powerful software development approach for multi-
cores [5, 4, 13].

We propose a power-aware streaming execution layer
for network-on-chip architectures that addresses the energy
constraints of embedded devices. We focus on the follow-
ing requirements:

• Running on a top of a host operating system that al-
ready provides core services such as memory manage-
ment and threading.

• Providing a uniform presentation of distributed com-
puting resources, offering transparent task manage-
ment, inter-task communication and task migration
services across distributed cores and memory.

• Providing profiling and monitoring of computational
resources, memory, and power consumption.

• Providing control over power management and fre-
quency scaling.

After reviewing the LPEL scheduling layer (cf. Sec-
tion 2), the SCC architecture (cf. Section 3), and the SCC
power features (cf. Section 3.1), we present a design for a
distributed variant of LPEL (cf. Section 4). We conclude
after a review of related work (cf. Section 5).

2 LPEL

The Light-Weight Parallel Execution Layer (LPEL) [13]
is an execution platform for stream processing on shared
memory architectures. It provides user-space threading and
communication mechanisms, building on operating system

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/82953010?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1. SCC Top-Level Tile Architecture

services such as kernel-level threading, memory manage-
ment, atomic instructions and time-stamping.

LPEL uses the portable coroutine library (PCL) [11] to
provide cooperative user level threads (ULT) over kernel
level threads (KLT). PCL offers a light-weight, low-level
mechanism for user-space context-switching, a feature from
which applications with a large number of threads benefit.

LPEL maintains a set of workers running on separate
kernel-level threads which are exclusively pinned to indi-
vidual cores. These workers manage disjoint sets of tasks
(ULTs). Each stream processing node instantiates a task
with its own execution stack. Tasks are assigned to individ-
ual workers at their creation time and are scheduled locally.

For inter-task communication, uni-directional streams—
implemented as a bounded buffer FIFO—are used. The
state of a task changes according to the availability of the
input and output items. Reading from an empty stream or
writing to a full stream causes the task to be blocked.

A mailbox is a multiple-producer single-consumer queue
that allows for concurrent enqueueing and dequeueing op-
erations. Mailboxes are used for inter-worker communica-
tion. Workers wait until a message arrives into the mailbox,
unless there is some ready task to be executed.

3 SCC Architecture Overview

The Intel Single-Chip Cloud Computer (SCC) has 48
cores connected via a network-on-chip [7]. As illustrated in
Figure 1, the SCC consists of a 4x6 tile grid connected by a
high bandwidth, low latency, 2D mesh network with hard-
wired X-Y routing. Four memory controllers (MC) support
a total of 16 to 64 GiB external DRAM. Each tile contains
two modified P54C processor cores with 32 KiB L1 cache,
256 KiB L2 cache, a 8 KiB SRAM message passing buffer,
and a router.

The programmer has to maintain memory coherency ex-
plicitly. For low latency, the MPB is used to move L1 cache
lines between cores, bypassing main memory. A special

message passing buffer type (MPBT) tags cache lines for
shared data in L1. Tagged data bypasses the L2 cache and
goes directly into L1 cache. The instruction set architecture
(ISA) has been extended with an instruction to invalidate all
changed cache lines in L1 tagged as MPBT. Access to this
invalidated L1 cache lines forces an update of the L1 cache
lines with the data in the shared memory.

3.1 SCC Voltage and Frequency Scaling

Each tile constitutes an island for which the frequency
can be set between 100 and 800 MHz. The various con-
trollers and the mesh also constitute their own frequency
islands. The frequency of the mesh can be set to 800 or
1600 MHz. Moreover, 2x2 arrays of tiles constitute islands
for which the voltage can be set between 0.7 and 1.3 V at a
granularity of 6.25 mV. The mesh constitutes a seventh volt-
age island. All adjustments are under application control.

Although SCC is not an embedded processor it has many
features in common with future embedded processors. As
an example, NoC architecture and DVFS are common fea-
tures in KALRAY’s MPPA MANYCORE [1] and SCC.
Thus, we believe that our approach can be used for future
embedded processor as well.

4 Distributed LPEL

We describe the distributed light-weight parallel execu-
tion layer (D-LPEL), designed to run on top of tile-based
network-on-chip (NoC) processors such as the SCC. Our
design allows for simple and efficient power and perfor-
mance management, deploying the frequency/voltage con-
figurations the SCC provides for power management. Such
a framework is useful for embedded systems with a high de-
mand for performance as well as energy efficiency. In the
following we describe the task management of D-LPEL and
explain why our design is suitable for power management
on streaming networks on NoC-based processors.

2



D-LPEL provides a unified interface for task manage-
ment/migration, inter-task communication, load balancing,
profiling, and monitoring. It exploits architecture-specific
features like power/frequency scaling on SCC. Figure 2
shows the architecture of D-LPEL, which sits between OS
and application layer, e.g., S-Net [5, 4], elevating services
from kernel-space to user-space.

Figure 2. Architecture of D-LPEL with the run-
time system of the S-Net coordination lan-
guage running on top of it

D-LPEL extends LPEL with a power manager and a
scheduler with support for load-balancing. D-LPEL is a
distributed execution layer for NoC processors based on
the multi-kernel paradigm. These kernels are called work-
ers in D-LPEL terminology. Each worker runs on top
of a single-kernel host operating system (OS). To control
space scheduling and time scheduling, D-LPEL bypasses
the scheduler of the host OS by a fixed mapping of a worker
to one core. Program tasks in D-LPEL are scheduled at user
level, with less overhead compared to scheduling different
processes at the host OS.

Figure 3. conductor worker correlation

As shown in Figure 3, the scheduling in D-LPEL follows
a centralised approach, where one special worker—the so-
called conductor—manages task queues and is responsible
for distributing jobs to workers. The communication be-
tween conductor and workers is performed over mailboxes.

Task switching can cause overhead and may create per-
formance bottlenecks. Execution time for task should be
long enough such that task switching overhead becomes in-
significant.

The built-in monitoring framework gathers task-specific
resource usage information which in turn gets interpreted
by the resource manager to aid the task manager in mak-
ing scheduling and migration decisions. The monitoring
information is also used to utilise architecture-specific fea-
tures such as voltage and frequency control at system or
domain level. These components work together to ensure
system-wide load-balancing and maximum resource utilisa-
tion while fulfilling power and other constraints. Based on
the message-based communication between conductor and
workers, D-LPEL ensures portability across distributed-
systems.

The assignment of ready tasks in D-LPEL to workers is
done by the conductor. The selection of a task to be sched-
uled for execution is based on the performance demand at
the individual streams connecting the tasks: The more mes-
sages are buffered at the output stream of a tasks, the lower
its priority is. In contrast, the more messages are buffered
at the input stream of a task, the higher its priority is. The
scheduling heuristics are described precisely in [12]. Cur-
rently the conductor does not take into account the commu-
nication topology of streaming network.

Power/Energy Management By observing the input and
output rates of the application or sub-networks, D-LPEL
can detect power saving potential. Figure 1 shows the tile
architecture of the SCC, including the voltage domains. By
controlling the tile frequency and voltage of each voltage
domain, D-LEPL can adjust the energy consumption of the
SCC to the minimum value where the system can still cope
with the performance demand.

D-LPEL detects whether a sub-network of the applica-
tion currently is able to cope with the demanded input data
rate by comparing the observed input and output rates. If the
average output rate falls behind its profiled ratio to the input
rate, D-LPEL increases the processor performance (voltage
and frequency) to the level where the performance demand
is satisfied.

By using the stream rates of streaming networks, D-
LPEL’s scheduling of streaming networks allows for an ef-
ficient power/energy management. For streaming networks
with fixed multiplicity of messages from input to output
this approach works by just comparing the input and output
rates. For streaming networks with a variable multiplicity
the system has to observe the average multiplicity in order
to interpret the relation of input rate to output rate.

3



5 Related work

Verstraaten developed a port of the S-Net coordina-
tion language to the SCC [15]. In that approach tasks
are mapped by static user annotations to a particular core.
In contrast, our approach allows dynamic load balancing
among cores.

Barrelfish is an open-source research multi-kernel oper-
ating system developed by ETH Zurich and Microsoft Re-
search [2]. Barrelfish treats the machine as a network of
independent cores and assumes no inter-core memory shar-
ing. Barrelfish has been ported to the SCC, but it does not
exploit its power management features.

MetalSVM [10] is a shared virtual memory management
system comprised of a kernel and a hypervisor and devel-
oped at RWTH Aachen. The main goal of MetalSVM is
to provide a cache coherent virtual machine where one in-
stance of an OS runs on the SCC, creating the illusion of a
cache coherent multicore system. To the best of our knowl-
edge, MetalSVM does not tap into power management.

Phillip Gschwandtner et al. explore a wide range of sys-
tem configurations—including different frequency/voltage
settings—for various benchmarks[6]. This work exposes
the effect of these settings, but it does not provide any
framework for power management.

Ionnou et al.[8] present a power management approach
for MPI applications. A runtime phase predictor adaptively
partitions program execution into recurring phases. When-
ever a phase is entered, the frequency for the respective core
is readjusted based on previously observed execution times.
The approach aims at an optimal performance/power yield
by holding a set performance penalty. This is, however,
not always feasible, because frequency changes can only
be made at the granularity of tiles. This can cause problems
with conflicting demands from different cores on the same
tile. Our approach, on the other hand, can migrate tasks
between power islands and therefore avoids the problem.

The majority of work we found on exploiting the power
management functionality of the SCC makes use of the
power management API of RCCE, a communication library
inspired by MPI and specifically targeted at the SCC. In
our approach we propose framework for a coordination lan-
guage with implicit power management, based on the state
of the streaming network.

6 Summary and Conclusion

In this paper we have proposed a power-aware streaming
execution layer for network-on-chip architectures that ad-
dresses the energy constraints of embedded devices. Such
a layer is useful as middleware for multi-core systems that
are developed according to the dataflow programming and
coordination approaches.

Although our work is still at an early stage, we believe

that putting special emphasis on power-awareness, our pro-
posal is an important step towards facilitating these ap-
proaches on systems that impose rigid power and thermal
constraints, like embedded systems and high-performance
devices.

References

[1] KALRAY MPPA MANYCORE Flyer, 2012.
http://www.kalray.eu/IMG/pdf/FLYER_
MPPA_MANYCORE.pdf accessed 13-Feb-2014.

[2] A. Baumann, P. Barham, P. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
multikernel: a new OS architecture for scalable multicore
systems. In Proceedings of the ACM SIGOPS 22nd sympo-
sium on Operating systems principles, pages 29–44, 2009.

[3] P. Ciancarini and T. Kielmann. Coordination models and
languages for parallel programming. In Proc. Int. Conf. on
Parallel Computing (PARCO99), pages 3–17. Imperial Col-
lege Press, 1999.

[4] C. Grelck, S. Scholz, and A. Shafarenko. Asynchronous
Stream Processing with S-Net. International Journal of Par-
allel Programming, 38(1):38–67, 2010.

[5] C. Grelck, S.-B. Scholz, and A. Shafarenko. A Gentle Intro-
duction to S-Net: Typed Stream Processing and Declarative
Coordination of Asynchronous Components. Parallel Pro-
cessing Letters, 18(2):221–237, 2008.

[6] P. Gschwandtner, T. Fahringer, and R. Prodan. Performance
analysis and benchmarking of the intel scc. In Cluster Com-
puting (CLUSTER), 2011 IEEE International Conference
on, pages 139–149. IEEE, 2011.

[7] SCC External Architecture Specification (EAS). Technical
report, Intel Labs, November 2010. Revision 1.1.

[8] N. Ioannou, M. Kauschke, M. Gries, and M. Cintra. Phase-
based application-driven hierarchical power management on
the single-chip cloud computer. In Parallel Architectures
and Compilation Techniques (PACT), 2011 International
Conference on, pages 131–142. IEEE, 2011.

[9] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances
in dataflow programming languages. ACM Comput. Surv.,
36(1):1–34, Mar. 2004.

[10] S. Lankes, P. Reble, C. Clauss, and O. Sinnen. The path to
metalsvm: Shared virtual memory for the scc. In The 4th
symposium of the Many-core Applications Research Com-
munity (MARC), page 7, 2011.

[11] D. Libenzi. GNU Portable Coroutine Library, 2012. URL:
http://www.xmailserver.org/libpcl.html.

[12] V. T. N. Nguyen and R. Kirner. Demand-based scheduling
priorities for performance optimisation of stream programs
on parallel platforms. In Proc. 13th International Confer-
ence on Algorithms and Architectures for Parallel Process-
ing, LNCS, Sorrento Peninsula, Italy, Dec. 2013. Springer.

[13] D. Prokesch. A Light-Weight Parallel Execution Layer for
Shared-Memory Stream Processing. Master’s thesis, Tech-
nical University of Vienna, Vienna, Austria, 2011.

[14] R. Stephens. A survey of stream processing. Acta Informat-
ica, 34(7):491–541, 1997.

[15] M. Verstraaten. High-level Programming of the Single-chip
Cloude Computer with S-Net. Master’s thesis, University of
Amsterdam, 2012.

4


