8,136 research outputs found

    Multimodal estimation of distribution algorithms

    Get PDF
    Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima

    An investigation into minimising total energy consumption and total completion time in a flexible job shop for recycling carbon fiber reinforced polymer

    Get PDF
    The increased use of carbon fiber reinforced polymer (CFRP) in industry coupled with European Union restrictions on landfill disposal has resulted in a need to develop relevant recycling technologies. Several methods, such as mechanical grinding, thermolysis and solvolysis, have been tried to recover the carbon fibers. Optimisation techniques for reducing energy consumed by above processes have also been developed. However, the energy efficiency of recycling CFRP at the workshop level has never been considered before. An approach to incorporate energy reduction into consideration while making the scheduling plans for a CFRP recycling workshop is presented in this paper. This research sets in a flexible job shop circumstance, model for the bi-objective problem that minimise total processing energy consumption and makespan is developed. A modified Genetic Algorithm for solving the raw material lot splitting problem is developed. A case study of the lot sizing problem in the flexible job shop for recycling CFRP is presented to show how scheduling plans affect energy consumption, and to prove the feasibility of the model and the developed algorithm

    Clustering analysis of railway driving missions with niching

    Get PDF
    A wide number of applications requires classifying or grouping data into a set of categories or clusters. Most popular clustering techniques to achieve this objective are K-means clustering and hierarchical clustering. However, both of these methods necessitate the a priori setting of the cluster number. In this paper, a clustering method based on the use of a niching genetic algorithm is presented, with the aim of finding the best compromise between the inter-cluster distance maximization and the intra-cluster distance minimization. This method is applied to three clustering benchmarks and to the classification of driving missions for railway applications

    Nonlinear finite element analysis of reinforced concrete beams strengthened with textile fine grained mortar

    Get PDF
    Nowadays, there was an increasing need of repairing and upgrading the reinforced concrete (RC) structure due to the deterioration of the structure. The fibre reinforced polymer (FRP) was commonly used for structural retrofitting purposes. However, owing to the debonding of the FRP from the concrete substrate and high cost of epoxy, it was gradually replaced with textile fine grained mortar (TFGM) nowadays. The TFGM system has been widely used in the construction field nowadays to repair the structure. Our study focus on the strain performances of the concrete surface, steel reinforcement and the textile itself. There were many proven experimental results showing that the TFGM was more effective than the other strengthening method such as FRP plate method. The experimental work done by previous researcher on investigation of strain performances of the concrete surface, steel reinforcement and the textile itself which consists of eleven (11) RC beams with dimension 150 x 200 x 2500 mm. The RC beams were strengthened with FGM and TFGM with 4 layers. The investigation continued with the finite element (FE) strain performance analysis with using Advanced Tool for Engineering Nonlinear Analysis (ATENA) software. The strain of the concrete surface, steel reinforcement and the textile were measured at a mid-point of RC beam. Then, the results of the finite element analysis software ATENA compared against the experimental results. The strain performances of the concrete and steel reinforcement improved noticeably when the number of layers of textile reinforcement used increased

    Signal synthesis by means of evolutionary algorithms

    Get PDF
    In this article, we investigate a procedure for generating signals with genetic algorithms. Signals are obtained from elementary patterns characterized by different degrees of freedom. These patterns are repeated and combined in order to reach specific signal shapes. The whole signal parametrization has to be determined by solving a difficult inverse problem of high dimensionality and strong multimodality. This can be carried out using evolutionary algorithms with the aim of finding all pattern configurations in the signal. The different signal synthesis schemes are evaluated, tested and applied to the generation of particular railway driving profiles

    Genetic algorithms with elitism-based immigrants for dynamic shortest path problem in mobile ad hoc networks

    Get PDF
    This article is posted here with permission from the IEEE - Copyright @ 2009 IEEEIn recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks (ANNs), genetic algorithms (GAs), particle swarm optimization (PSO), etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile ad hoc network (MANET), wireless sensor network (WSN), etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, that is, the network topology changes over time due to energy conservation or node mobility. Therefore, the SP problem turns out to be a dynamic optimization problem (DOP) in MANETs. In this paper, we propose to use elitism-based immigrants GA (EIGA) to solve the dynamic SP problem in MANETs. We consider MANETs as target systems because they represent new generation wireless networks. The experimental results show that the EIGA can quickly adapt to the environmental changes (i.e., the network topology change) and produce good solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1
    • …
    corecore