46 research outputs found

    Offspring Population Size Matters when Comparing Evolutionary Algorithms with Self-Adjusting Mutation Rates

    Full text link
    We analyze the performance of the 2-rate (1+λ)(1+\lambda) Evolutionary Algorithm (EA) with self-adjusting mutation rate control, its 3-rate counterpart, and a (1+λ)(1+\lambda)~EA variant using multiplicative update rules on the OneMax problem. We compare their efficiency for offspring population sizes ranging up to λ=3,200\lambda=3,200 and problem sizes up to n=100,000n=100,000. Our empirical results show that the ranking of the algorithms is very consistent across all tested dimensions, but strongly depends on the population size. While for small values of λ\lambda the 2-rate EA performs best, the multiplicative updates become superior for starting for some threshold value of λ\lambda between 50 and 100. Interestingly, for population sizes around 50, the (1+λ)(1+\lambda)~EA with static mutation rates performs on par with the best of the self-adjusting algorithms. We also consider how the lower bound pminp_{\min} for the mutation rate influences the efficiency of the algorithms. We observe that for the 2-rate EA and the EA with multiplicative update rules the more generous bound pmin=1/n2p_{\min}=1/n^2 gives better results than pmin=1/np_{\min}=1/n when λ\lambda is small. For both algorithms the situation reverses for large~λ\lambda.Comment: To appear at Genetic and Evolutionary Computation Conference (GECCO'19). v2: minor language revisio

    Self-adjusting Population Sizes for Non-elitist Evolutionary Algorithms:Why Success Rates Matter

    Get PDF
    Evolutionary algorithms (EAs) are general-purpose optimisers that come with several parameters like the sizes of parent and offspring populations or the mutation rate. It is well known that the performance of EAs may depend drastically on these parameters. Recent theoretical studies have shown that self-adjusting parameter control mechanisms that tune parameters during the algorithm run can provably outperform the best static parameters in EAs on discrete problems. However, the majority of these studies concerned elitist EAs and we do not have a clear answer on whether the same mechanisms can be applied for non-elitist EAs. We study one of the best-known parameter control mechanisms, the one-fifth success rule, to control the offspring population size λ in the non-elitist (1, λ) EA. It is known that the (1, λ) EA has a sharp threshold with respect to the choice of λ where the expected runtime on the benchmark function OneMax changes from polynomial to exponential time. Hence, it is not clear whether parameter control mechanisms are able to find and maintain suitable values of λ. For OneMax we show that the answer crucially depends on the success rate s (i. e. a one-(s + 1)-th success rule). We prove that, if the success rate is appropriately small, the self-adjusting (1, λ) EA optimises OneMax in O(n) expected generations and O(n log n) expected evaluations, the best possible runtime for any unary unbiased black-box algorithm. A small success rate is crucial: we also show that if the success rate is too large, the algorithm has an exponential runtime on OneMax and other functions with similar characteristics

    Self-Adjusting Evolutionary Algorithms for Multimodal Optimization

    Full text link
    Recent theoretical research has shown that self-adjusting and self-adaptive mechanisms can provably outperform static settings in evolutionary algorithms for binary search spaces. However, the vast majority of these studies focuses on unimodal functions which do not require the algorithm to flip several bits simultaneously to make progress. In fact, existing self-adjusting algorithms are not designed to detect local optima and do not have any obvious benefit to cross large Hamming gaps. We suggest a mechanism called stagnation detection that can be added as a module to existing evolutionary algorithms (both with and without prior self-adjusting algorithms). Added to a simple (1+1) EA, we prove an expected runtime on the well-known Jump benchmark that corresponds to an asymptotically optimal parameter setting and outperforms other mechanisms for multimodal optimization like heavy-tailed mutation. We also investigate the module in the context of a self-adjusting (1+λ\lambda) EA and show that it combines the previous benefits of this algorithm on unimodal problems with more efficient multimodal optimization. To explore the limitations of the approach, we additionally present an example where both self-adjusting mechanisms, including stagnation detection, do not help to find a beneficial setting of the mutation rate. Finally, we investigate our module for stagnation detection experimentally.Comment: 26 pages. Full version of a paper appearing at GECCO 202
    corecore