6,944 research outputs found
The use of synchrotron edge topography to study polytype nearest neighbour relationships in SiC
A brief review of the phenomenon of polytypism is presented and its prolific abundance in Silicon Carbide discussed. An attempt has been made to emphasise modern developments in understanding this unique behaviour. The properties of Synchrotron Radiation are shown to be ideally suited to studies of polytypes in various materials and in particular the coalescence of polytypes in SiC. It is shown that with complex multipolytypic crystals the technique of edge topography allows the spatial extent of disorder to be determined and, from the superposition of Laue type reflections, neighbourhood relationships between polytypes can be deduced. Finer features have now been observed with the advent of second generation synchrotrons, the resolution available enabling the regions between adjoining polytypes to be examined more closely. It is shown that Long Period Polytypes and One Dimensionally Disordered layers often found in association with regions of high defect density are common features at polytype boundaries. An idealised configuration termed a "polytype sandwich" is presented as a model for the structure of SiC grown by the modified Lely technique. The frequency of common sandwich edge profiles are classified and some general trends of polytype neighbourism are summarised
Group Theory analysis of phonons in two-dimensional Transition Metal Dichalcogenides
Transition metal dichalcogenides (TMDCs) have emerged as a new two
dimensional materials field since the monolayer and few-layer limits show
different properties when compared to each other and to their respective bulk
materials. For example, in some cases when the bulk material is exfoliated down
to a monolayer, an indirect-to-direct band gap in the visible range is
observed. The number of layers ( even or odd) drives changes in space
group symmetry that are reflected in the optical properties. The understanding
of the space group symmetry as a function of the number of layers is therefore
important for the correct interpretation of the experimental data. Here we
present a thorough group theory study of the symmetry aspects relevant to
optical and spectroscopic analysis, for the most common polytypes of TMDCs,
i.e. , and , as a function of the number of layers. Real space
symmetries, the group of the wave vectors, the relevance of inversion symmetry,
irreducible representations of the vibrational modes, optical selection rules
and Raman tensors are discussed.Comment: 32 pages, 4 figure
Rich structural phase diagram and thermoelectric properties of layered tellurides Mo1-xNbxTe2
MoTe2 is a rare transition-metal ditelluride having two kinds of layered
polytypes, hexagonal structure with trigonal prismatic Mo coordination and
monoclinic structure with octahedral Mo coordination. The monoclinic distortion
in the latter is caused by anisotropic metal-metal bonding. In this work, we
have examined the Nb doping effect on both polytypes of MoTe2 and clarified a
structural phase diagram for Mo1-xNbxTe2 containing four kinds of polytypes. A
rhombohedral polytype crystallizing in polar space group has been newly
identified as a high-temperature metastable phase at slightly Nb-rich
composition. Considering the results of thermoelectric measurements and the
first principles calculations, the Nb ion seemingly acts as a hole dopant in
the rigid band scheme. On the other hand, the significant interlayer
contraction upon the Nb doping, associated with the Te p-p hybridization, is
confirmed especially for the monoclinic phase, which implies a shift of the
p-band energy level. The origin of the metal-metal bonding in the monoclinic
structure is discussed in terms of the d electron counting and the Te p-p
hybridization.Comment: 16 pages, 6 figures, 1 table, to be published in APL Material
Nomenclature of the hydrotalcite supergroup: Natural layered double hydroxides
Layered double hydroxide (LDH) compounds are characterized by structures in which layers with a brucite-like structure carry a net positive charge, usually due to the partial substitution of trivalent octahedrally coordinated cations for divalent cations, giving a general layer formula [( M 2+ 1-x M 3+ x )(OH)2] x +. This positive charge is balanced by anions which are intercalated between the layers. Intercalated molecular water typically provides hydrogen bonding between the brucite layers. In addition to synthetic compounds, some of which have significant industrial applications, more than 40 mineral species conform to this description. Hydrotalcite, Mg6Al2(OH) 16[CO3]•4H2O, as the longest-known example, is the archetype of this supergroup of minerals. We review the history, chemistry, crystal structure, polytypic variation and status of all hydrotalcite-supergroup species reported to date. The dominant divalent cations, M 2+, that have been reported in hydrotalcite supergroup minerals are Mg, Ca, Mn, Fe, Ni, Cu and Zn; the dominant trivalent cations, M 3+, are Al, Mn, Fe, Co and Ni. The most common intercalated anions are (CO3)2-, (SO4)2- and Cl -; and OH-, S2- and [Sb(OH)6] - have also been reported. Some species contain intercalated cationic or neutral complexes such as [Na(H2O)6]+ or [MgSO4]0. We define eight groups within the supergroup on the basis of a combination of criteria. These are (1) the hydrotalcite group, with M 2+:M 3+ = 3:1 (layer spacing ∼7.8 Å); (2) the quintinite group, with M 2+:M 3+ = 2:1 (layer spacing ∼7.8 Å); (3) the fougèrite group, with M 2+ = Fe2+, M 3+ = Fe3+ in a range of ratios, and with O2- replacing OH- in the brucite module to maintain charge balance (layer spacing ∼7.8 Å); (4) the woodwardite group, with variable M 2+:M 3+ and interlayer [SO4] 2-, leading to an expanded layer spacing of ∼8.9 Å; (5) the cualstibite group, with interlayer [Sb(OH)6]- and a layer spacing of ∼9.7 Å; (6) the glaucocerinite group, with interlayer [SO4]2- as in the woodwardite group, and with additional interlayer H2O molecules that further expand the layer spacing to ∼11 Å; (7) the wermlandite group, with a layer spacing of ∼11 Å, in which cationic complexes occur with anions between the brucite-like layers; and (8) the hydrocalumite group, with M 2+ = Ca2+ and M 3+ = Al, which contains brucite-like layers in which the Ca:Al ratio is 2:1 and the large cation, Ca2+, is coordinated to a seventh ligand of 'interlayer' water. The principal mineral status changes are as follows. (1) The names manasseite, sjögrenite and barbertonite are discredited; these minerals are the 2H polytypes of hydrotalcite, pyroaurite and stichtite, respectively. Cyanophyllite is discredited as it is the 1M polytype of cualstibite. (2) The mineral formerly described as fougèrite has been found to be an intimate intergrowth of two phases with distinct Fe 2+:Fe3+ ratios. The phase with Fe2+:Fe 3+ = 2:1 retains the name fougèrite; that with Fe 2+:Fe3+ = 1:2 is defined as the new species trébeurdenite. (3) The new minerals omsite (IMA2012-025), Ni 2Fe3+(OH)6[Sb(OH)6], and mössbauerite (IMA2012-049), Fe3+ 6O 4(OH)8[CO3]•3H2O, which are both in the hydrotalcite supergroup are included in the discussion. (4) Jamborite, carrboydite, zincaluminite, motukoreaite, natroglaucocerinite, brugnatellite and muskoxite are identified as questionable species which need further investigation in order to verify their structure and composition. (5) The ranges of compositions currently ascribed to motukoreaite and muskoxite may each represent more than one species. The same applies to the approved species hydrowoodwardite and hydrocalumite. (6) Several unnamed minerals have been reported which are likely to represent additional species within the supergroup. This report has been approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association, voting proposal 12-B. We also propose a compact notation for identifying synthetic LDH phases, for use by chemists as a preferred alternative to the current widespread misuse of mineral names. © 2012 Mineralogical Society.Fil: Mills, S.J.. Museum Victoria; AustraliaFil: Christy, A.G.. Australian National University. Centre for Advanced Microscopy; AustraliaFil: Génin, J. M. R.. CNRS-Université de Lorraine; FranciaFil: Kameda, T.. Tohoku University. Graduate School of Environmental Studies; JapónFil: Colombo, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentin
Correlation between layer thickness and periodicity of long polytypes in silicon carbide
The layer widths and repeat spacing of long-period polytypes (LPPs) have been determined using synchrotron radiation source (SRS) X-ray diffraction topography (XRDT). This method has proved to be a powerful tool in investigating the spatial extent of one-dimensional disorder (1DD), long-period polytypes (LPPs) and the boundaries of polytype layers in silicon carbide (SiC). The resulting neighbourhood coalescence models have confirmed the validity of the sandwich rule even in the limit of two arbitrarily long LPPs, as well as the unique nature of the 6H polytype. A significant empirical trend is reported here that relates the thickness of LPP layers to the periodicity of the repeat stacking sequence measured on the topographs. A good correlation between the data suggests that this behaviour is governed by a simple mathematical expression t = kNn. Values for k and n have been determined that relate the polytype thickness (t in microns) to the number of hexagonal layers (N) in the polytype stacking repeat. These values can be used to prompt questions about the limits of polytypism and disorder in SiC
Long period polytype boundaries in silicon carbide
A significant gap in our understanding of polytypism exists, caused partly by the lack of experimental data on the spatial distribution of polytype coalescence and knowledge of the regions between adjoining polytypes. Few observations, Takei & Francombe (1967) apart, of the relative location of different polytypes have been reported. A phenomenological description of the boundaries, exact position of one-dimensional disorder (1DD) and long period polytypes (LPP’s) has been made possible by synchrotron X-ray diffraction topography (XRDT)
Superconducting tantalum disulfide nanotapes; growth, structure and stoichiometry
Superconducting tantalum disulfide nanowires have been synthesised by surface-assisted chemical vapour transport (SACVT) methods and their crystal structure, morphology and stoichiometry studied by powder X-ray diffraction (PXD), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and nanodiffraction. The evolution of morphology, stoichiometry and structure of materials grown by SACVT methods in the Ta-S system with reaction temperature was investigated systematically. High-aspect-ratio, superconducting disulfide nanowires are produced at intermediate reaction temperatures (650 degrees C). The superconducting wires are single crystalline, adopt the 2H polytypic structure (hexagonal space group P6(3)/mmc: a = 3.32(2) angstrom, c = 12.159(2) angstrom; c/a = 3.66) and grow in the <2<(1)over bar>(1) over bar0> direction. The nanowires are of rectangular cross-section forming nanotapes composed of bundles of much smaller fibres that grow cooperatively. At lower reaction temperatures nanowires close to a composition of TaS3 are produced whereas elevated temperatures yield platelets of 1T TaS2
- …
