6 research outputs found

    Polynomial-Time Key Recovery Attack on the Faure-Loidreau Scheme based on Gabidulin Codes

    Full text link
    Encryption schemes based on the rank metric lead to small public key sizes of order of few thousands bytes which represents a very attractive feature compared to Hamming metric-based encryption schemes where public key sizes are of order of hundreds of thousands bytes even with additional structures like the cyclicity. The main tool for building public key encryption schemes in rank metric is the McEliece encryption setting used with the family of Gabidulin codes. Since the original scheme proposed in 1991 by Gabidulin, Paramonov and Tretjakov, many systems have been proposed based on different masking techniques for Gabidulin codes. Nevertheless, over the years all these systems were attacked essentially by the use of an attack proposed by Overbeck. In 2005 Faure and Loidreau designed a rank-metric encryption scheme which was not in the McEliece setting. The scheme is very efficient, with small public keys of size a few kiloBytes and with security closely related to the linearized polynomial reconstruction problem which corresponds to the decoding problem of Gabidulin codes. The structure of the scheme differs considerably from the classical McEliece setting and until our work, the scheme had never been attacked. We show in this article that this scheme like other schemes based on Gabidulin codes, is also vulnerable to a polynomial-time attack that recovers the private key by applying Overbeck's attack on an appropriate public code. As an example we break concrete proposed 8080 bits security parameters in a few seconds.Comment: To appear in Designs, Codes and Cryptography Journa

    LIGA: A Cryptosystem Based on the Hardness of Rank-Metric List and Interleaved Decoding

    Full text link
    We propose the new rank-metric code-based cryptosystem LIGA which is based on the hardness of list decoding and interleaved decoding of Gabidulin codes. LIGA is an improved variant of the Faure-Loidreau (FL) system, which was broken in a structural attack by Gaborit, Otmani, and Tal\'e Kalachi (GOT, 2018). We keep the FL encryption and decryption algorithms, but modify the insecure key generation algorithm. Our crucial observation is that the GOT attack is equivalent to decoding an interleaved Gabidulin code. The new key generation algorithm constructs public keys for which all polynomial-time interleaved decoders fail---hence LIGA resists the GOT attack. We also prove that the public-key encryption version of LIGA is IND-CPA secure in the standard model and the KEM version is IND-CCA2 secure in the random oracle model, both under hardness assumptions of formally defined problems related to list decoding and interleaved decoding of Gabidulin codes. We propose and analyze various exponential-time attacks on these problems, calculate their work factors, and compare the resulting parameters to NIST proposals. The strengths of LIGA are short ciphertext sizes and (relatively) small key sizes. Further, LIGA guarantees correct decryption and has no decryption failure rate. It is not based on hiding the structure of a code. Since there are efficient and constant-time algorithms for encoding and decoding Gabidulin codes, timing attacks on the encryption and decryption algorithms can be easily prevented.Comment: Extended version of arXiv:1801.0368

    Expanded Gabidulin Codes and Their Application to Cryptography

    Get PDF
    This paper presents a new family of linear codes, namely the expanded Gabidulin codes. Exploiting the existing fast decoder of Gabidulin codes, we propose an efficient algorithm to decode these new codes when the noise vector satisfies a certain condition. Furthermore, these new codes enjoy an excellent error-correcting capability because of the optimality of their parent Gabidulin codes. Based on different masking techniques, we give two encryption schemes by using expanded Gabidulin codes in the McEliece setting. According to our analysis, both of these two cryptosystems can resist the existing structural attacks. Our proposals have an obvious advantage in public-key representation without using the cyclic or quasi-cyclic structure compared to some other code-based cryptosystems

    On a Rank-Metric Code-Based Cryptosystem with Small Key Size

    Get PDF
    A repair of the Faure-Loidreau (FL) public-key code-based cryptosystem is proposed.The FL cryptosystem is based on the hardness of list decoding Gabidulin codes which are special rank-metric codes. We prove that the recent structural attack on the system by Gaborit et al. is equivalent to decoding an interleaved Gabidulin code. Since all known polynomial-time decoders for these codes fail for a large constructive class of error patterns, we are able to construct public keys that resist the attack. It is also shown that all other known attacks fail for our repair and parameter choices. Compared to other code-based cryptosystems, we obtain significantly smaller key sizes for the same security level
    corecore