3,169 research outputs found

    Online Robot Introspection via Wrench-based Action Grammars

    Full text link
    Robotic failure is all too common in unstructured robot tasks. Despite well-designed controllers, robots often fail due to unexpected events. How do robots measure unexpected events? Many do not. Most robots are driven by the sense-plan act paradigm, however more recently robots are undergoing a sense-plan-act-verify paradigm. In this work, we present a principled methodology to bootstrap online robot introspection for contact tasks. In effect, we are trying to enable the robot to answer the question: what did I do? Is my behavior as expected or not? To this end, we analyze noisy wrench data and postulate that the latter inherently contains patterns that can be effectively represented by a vocabulary. The vocabulary is generated by segmenting and encoding the data. When the wrench information represents a sequence of sub-tasks, we can think of the vocabulary forming a sentence (set of words with grammar rules) for a given sub-task; allowing the latter to be uniquely represented. The grammar, which can also include unexpected events, was classified in offline and online scenarios as well as for simulated and real robot experiments. Multiclass Support Vector Machines (SVMs) were used offline, while online probabilistic SVMs were are used to give temporal confidence to the introspection result. The contribution of our work is the presentation of a generalizable online semantic scheme that enables a robot to understand its high-level state whether nominal or abnormal. It is shown to work in offline and online scenarios for a particularly challenging contact task: snap assemblies. We perform the snap assembly in one-arm simulated and real one-arm experiments and a simulated two-arm experiment. This verification mechanism can be used by high-level planners or reasoning systems to enable intelligent failure recovery or determine the next most optima manipulation skill to be used.Comment: arXiv admin note: substantial text overlap with arXiv:1609.0494

    Synthesizing Program Input Grammars

    Full text link
    We present an algorithm for synthesizing a context-free grammar encoding the language of valid program inputs from a set of input examples and blackbox access to the program. Our algorithm addresses shortcomings of existing grammar inference algorithms, which both severely overgeneralize and are prohibitively slow. Our implementation, GLADE, leverages the grammar synthesized by our algorithm to fuzz test programs with structured inputs. We show that GLADE substantially increases the incremental coverage on valid inputs compared to two baseline fuzzers

    Efficient learning of context-free grammars from positive structural examples

    Get PDF
    AbstractIn this paper, we introduce a new normal form for context-free grammars, called reversible context-free grammars, for the problem of learning context-free grammars from positive-only examples. A context-free grammar G = (N, Σ, P, S) is said to be reversible if (1) A → α and B → α in P implies A = B and (2) A → αBβ and A → αCβ in P implies B = C. We show that the class of reversible context-free grammars can be identified in the limit from positive samples of structural descriptions and there exists an efficient algorithm to identify them from positive samples of structural descriptions, where a structural description of a context-free grammar is an unlabelled derivation tree of the grammar. This implies that if positive structural examples of a reversible context-free grammar for the target language are available to the learning algorithm, the full class of context-free languages can be learned efficiently from positive samples

    Learning probability distributions generated by finite-state machines

    Get PDF
    We review methods for inference of probability distributions generated by probabilistic automata and related models for sequence generation. We focus on methods that can be proved to learn in the inference in the limit and PAC formal models. The methods we review are state merging and state splitting methods for probabilistic deterministic automata and the recently developed spectral method for nondeterministic probabilistic automata. In both cases, we derive them from a high-level algorithm described in terms of the Hankel matrix of the distribution to be learned, given as an oracle, and then describe how to adapt that algorithm to account for the error introduced by a finite sample.Peer ReviewedPostprint (author's final draft

    Using Contextual Representations to Efficiently Learn Context-Free Languages

    No full text
    International audienceWe present a polynomial update time algorithm for the inductive inference of a large class of context-free languages using the paradigm of positive data and a membership oracle. We achieve this result by moving to a novel representation, called Contextual Binary Feature Grammars (CBFGs), which are capable of representing richly structured context-free languages as well as some context sensitive languages. These representations explicitly model the lattice structure of the distribution of a set of substrings and can be inferred using a generalisation of distributional learning. This formalism is an attempt to bridge the gap between simple learnable classes and the sorts of highly expressive representations necessary for linguistic representation: it allows the learnability of a large class of context-free languages, that includes all regular languages and those context-free languages that satisfy two simple constraints. The formalism and the algorithm seem well suited to natural language and in particular to the modeling of first language acquisition. Preliminary experimental results confirm the effectiveness of this approach

    Feasible Learnability of Formal Grammars and the Theory of Natural Language Acquisition

    Get PDF
    We propose to apply a complexity theoretic notion of feasible learnability called polynomial learnability to the evaluation of grammatical formalisms for linguistic description. Polynomial learnability was originally defined by Valiant in the context of boolean concept learning and subsequently generalized by Blumer et al. to infinitary domains. We give a clear, intuitive exposition of this notion of learnability and what characteristics of a collection of languages may or may not help feasible learnability under this paradigm. In particular, we present a novel, nontrivial constraint on the degree of locality of grammars which allows a rich class of mildly context sensitive languages to be feasibly learnable. We discuss possible implications of this observation to the theory of natural language acquisition

    Toric grammars: a new statistical approach to natural language modeling

    Full text link
    We propose a new statistical model for computational linguistics. Rather than trying to estimate directly the probability distribution of a random sentence of the language, we define a Markov chain on finite sets of sentences with many finite recurrent communicating classes and define our language model as the invariant probability measures of the chain on each recurrent communicating class. This Markov chain, that we call a communication model, recombines at each step randomly the set of sentences forming its current state, using some grammar rules. When the grammar rules are fixed and known in advance instead of being estimated on the fly, we can prove supplementary mathematical properties. In particular, we can prove in this case that all states are recurrent states, so that the chain defines a partition of its state space into finite recurrent communicating classes. We show that our approach is a decisive departure from Markov models at the sentence level and discuss its relationships with Context Free Grammars. Although the toric grammars we use are closely related to Context Free Grammars, the way we generate the language from the grammar is qualitatively different. Our communication model has two purposes. On the one hand, it is used to define indirectly the probability distribution of a random sentence of the language. On the other hand it can serve as a (crude) model of language transmission from one speaker to another speaker through the communication of a (large) set of sentences
    • …
    corecore