7,546 research outputs found

    Computing Multi-Homogeneous Bezout Numbers is Hard

    Full text link
    The multi-homogeneous Bezout number is a bound for the number of solutions of a system of multi-homogeneous polynomial equations, in a suitable product of projective spaces. Given an arbitrary, not necessarily multi-homogeneous system, one can ask for the optimal multi-homogenization that would minimize the Bezout number. In this paper, it is proved that the problem of computing, or even estimating the optimal multi-homogeneous Bezout number is actually NP-hard. In terms of approximation theory for combinatorial optimization, the problem of computing the best multi-homogeneous structure does not belong to APX, unless P = NP. Moreover, polynomial time algorithms for estimating the minimal multi-homogeneous Bezout number up to a fixed factor cannot exist even in a randomized setting, unless BPP contains NP

    Approximation Algorithms for Partially Colorable Graphs

    Get PDF
    Graph coloring problems are a central topic of study in the theory of algorithms. We study the problem of partially coloring partially colorable graphs. For alpha = alpha |V| such that the graph induced on S is k-colorable. Partial k-colorability is a more robust structural property of a graph than k-colorability. For graphs that arise in practice, partial k-colorability might be a better notion to use than k-colorability, since data arising in practice often contains various forms of noise. We give a polynomial time algorithm that takes as input a (1 - epsilon)-partially 3-colorable graph G and a constant gamma in [epsilon, 1/10], and colors a (1 - epsilon/gamma) fraction of the vertices using O~(n^{0.25 + O(gamma^{1/2})}) colors. We also study natural semi-random families of instances of partially 3-colorable graphs and partially 2-colorable graphs, and give stronger bi-criteria approximation guarantees for these family of instances

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems

    The min-max edge q-coloring problem

    Full text link
    In this paper we introduce and study a new problem named \emph{min-max edge qq-coloring} which is motivated by applications in wireless mesh networks. The input of the problem consists of an undirected graph and an integer qq. The goal is to color the edges of the graph with as many colors as possible such that: (a) any vertex is incident to at most qq different colors, and (b) the maximum size of a color group (i.e. set of edges identically colored) is minimized. We show the following results: 1. Min-max edge qq-coloring is NP-hard, for any q2q \ge 2. 2. A polynomial time exact algorithm for min-max edge qq-coloring on trees. 3. Exact formulas of the optimal solution for cliques and almost tight bounds for bicliques and hypergraphs. 4. A non-trivial lower bound of the optimal solution with respect to the average degree of the graph. 5. An approximation algorithm for planar graphs.Comment: 16 pages, 5 figure

    A Constant Factor Approximation Algorithm for Unsplittable Flow on Paths

    Get PDF
    In the unsplittable flow problem on a path, we are given a capacitated path PP and nn tasks, each task having a demand, a profit, and start and end vertices. The goal is to compute a maximum profit set of tasks, such that for each edge ee of PP, the total demand of selected tasks that use ee does not exceed the capacity of ee. This is a well-studied problem that has been studied under alternative names, such as resource allocation, bandwidth allocation, resource constrained scheduling, temporal knapsack and interval packing. We present a polynomial time constant-factor approximation algorithm for this problem. This improves on the previous best known approximation ratio of O(logn)O(\log n). The approximation ratio of our algorithm is 7+ϵ7+\epsilon for any ϵ>0\epsilon>0. We introduce several novel algorithmic techniques, which might be of independent interest: a framework which reduces the problem to instances with a bounded range of capacities, and a new geometrically inspired dynamic program which solves a special case of the maximum weight independent set of rectangles problem to optimality. In the setting of resource augmentation, wherein the capacities can be slightly violated, we give a (2+ϵ)(2+\epsilon)-approximation algorithm. In addition, we show that the problem is strongly NP-hard even if all edge capacities are equal and all demands are either~1,~2, or~3.Comment: 37 pages, 5 figures Version 2 contains the same results as version 1, but the presentation has been greatly revised and improved. References have been adde
    corecore