12,476 research outputs found

    Homomorphic encryption and some black box attacks

    Full text link
    This paper is a compressed summary of some principal definitions and concepts in the approach to the black box algebra being developed by the authors. We suggest that black box algebra could be useful in cryptanalysis of homomorphic encryption schemes, and that homomorphic encryption is an area of research where cryptography and black box algebra may benefit from exchange of ideas

    The streaming kk-mismatch problem

    Get PDF
    We consider the streaming complexity of a fundamental task in approximate pattern matching: the kk-mismatch problem. It asks to compute Hamming distances between a pattern of length nn and all length-nn substrings of a text for which the Hamming distance does not exceed a given threshold kk. In our problem formulation, we report not only the Hamming distance but also, on demand, the full \emph{mismatch information}, that is the list of mismatched pairs of symbols and their indices. The twin challenges of streaming pattern matching derive from the need both to achieve small working space and also to guarantee that every arriving input symbol is processed quickly. We present a streaming algorithm for the kk-mismatch problem which uses O(klognlognk)O(k\log{n}\log\frac{n}{k}) bits of space and spends \ourcomplexity time on each symbol of the input stream, which consists of the pattern followed by the text. The running time almost matches the classic offline solution and the space usage is within a logarithmic factor of optimal. Our new algorithm therefore effectively resolves and also extends an open problem first posed in FOCS'09. En route to this solution, we also give a deterministic O(k(lognk+logΣ))O( k (\log \frac{n}{k} + \log |\Sigma|) )-bit encoding of all the alignments with Hamming distance at most kk of a length-nn pattern within a text of length O(n)O(n). This secondary result provides an optimal solution to a natural communication complexity problem which may be of independent interest.Comment: 27 page

    Average-Case Complexity

    Full text link
    We survey the average-case complexity of problems in NP. We discuss various notions of good-on-average algorithms, and present completeness results due to Impagliazzo and Levin. Such completeness results establish the fact that if a certain specific (but somewhat artificial) NP problem is easy-on-average with respect to the uniform distribution, then all problems in NP are easy-on-average with respect to all samplable distributions. Applying the theory to natural distributional problems remain an outstanding open question. We review some natural distributional problems whose average-case complexity is of particular interest and that do not yet fit into this theory. A major open question whether the existence of hard-on-average problems in NP can be based on the P\neqNP assumption or on related worst-case assumptions. We review negative results showing that certain proof techniques cannot prove such a result. While the relation between worst-case and average-case complexity for general NP problems remains open, there has been progress in understanding the relation between different ``degrees'' of average-case complexity. We discuss some of these ``hardness amplification'' results

    On optimal language compression for sets in PSPACE/poly

    Full text link
    We show that if DTIME[2^O(n)] is not included in DSPACE[2^o(n)], then, for every set B in PSPACE/poly, all strings x in B of length n can be represented by a string compressed(x) of length at most log(|B^{=n}|)+O(log n), such that a polynomial-time algorithm, given compressed(x), can distinguish x from all the other strings in B^{=n}. Modulo the O(log n) additive term, this achieves the information-theoretic optimum for string compression. We also observe that optimal compression is not possible for sets more complex than PSPACE/poly because for any time-constructible superpolynomial function t, there is a set A computable in space t(n) such that at least one string x of length n requires compressed(x) to be of length 2 log(|A^=n|).Comment: submitted to Theory of Computing System

    Distributed PCP Theorems for Hardness of Approximation in P

    Get PDF
    We present a new distributed model of probabilistically checkable proofs (PCP). A satisfying assignment x{0,1}nx \in \{0,1\}^n to a CNF formula φ\varphi is shared between two parties, where Alice knows x1,,xn/2x_1, \dots, x_{n/2}, Bob knows xn/2+1,,xnx_{n/2+1},\dots,x_n, and both parties know φ\varphi. The goal is to have Alice and Bob jointly write a PCP that xx satisfies φ\varphi, while exchanging little or no information. Unfortunately, this model as-is does not allow for nontrivial query complexity. Instead, we focus on a non-deterministic variant, where the players are helped by Merlin, a third party who knows all of xx. Using our framework, we obtain, for the first time, PCP-like reductions from the Strong Exponential Time Hypothesis (SETH) to approximation problems in P. In particular, under SETH we show that there are no truly-subquadratic approximation algorithms for Bichromatic Maximum Inner Product over {0,1}-vectors, Bichromatic LCS Closest Pair over permutations, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first two problems we obtain nearly-polynomial factors of 2(logn)1o(1)2^{(\log n)^{1-o(1)}}; only (1+o(1))(1+o(1))-factor lower bounds (under SETH) were known before
    corecore