33 research outputs found

    Piecewise Extended Chebyshev Spaces: a numerical test for design

    Get PDF
    Given a number of Extended Chebyshev (EC) spaces on adjacent intervals, all of the same dimension, we join them via convenient connection matrices without increasing the dimension. The global space is called a Piecewise Extended Chebyshev (PEC) Space. In such a space one can count the total number of zeroes of any non-zero element, exactly as in each EC-section-space. When this number is bounded above in the global space the same way as in its section-spaces, we say that it is an Extended Chebyshev Piecewise (ECP) space. A thorough study of ECP-spaces has been developed in the last two decades in relation to blossoms, with a view to design. In particular, extending a classical procedure for EC-spaces, ECP-spaces were recently proved to all be obtained by means of piecewise generalised derivatives. This yields an interesting constructive characterisation of ECP-spaces. Unfortunately, except for low dimensions and for very few adjacent intervals, this characterisation proved to be rather difficult to handle in practice. To try to overcome this difficulty, in the present article we show how to reinterpret the constructive characterisation as a theoretical procedure to determine whether or not a given PEC-space is an ECP-space. This procedure is then translated into a numerical test, whose usefulness is illustrated by relevant examples

    A practical method for computing with piecewise Chebyshevian splines

    Get PDF
    A piecewise Chebyshevian spline space is good for design when it possesses a B-spline basis and this property is preserved under knot insertion. The interest in such kind of spaces is justified by the fact that, similarly as for polynomial splines, the related parametric curves exhibit the desired properties of convex hull inclusion, variation diminution and intuitive relation between the curve shape and the location of the control points. For a good-for-design space, in this paper we construct a set of functions, called transition functions, which allow for efficient computation of the B-spline basis, even in the case of nonuniform and multiple knots. Moreover, we show how the spline coefficients of the representations associated with a refined knot partition and with a raised order can conveniently be expressed by means of transition functions. This result allows us to provide effective procedures that generalize the classical knot insertion and degree raising algorithms for polynomial splines. We further discuss how the approach can straightforwardly be generalized to deal with geometrically continuous piecewise Chebyshevian splines as well as with splines having section spaces of different dimensions. From a numerical point of view, we show that the proposed evaluation method is easier to implement and has higher accuracy than other existing algorithms

    On multi-degree splines

    Full text link
    Multi-degree splines are piecewise polynomial functions having sections of different degrees. For these splines, we discuss the construction of a B-spline basis by means of integral recurrence relations, extending the class of multi-degree splines that can be derived by existing approaches. We then propose a new alternative method for constructing and evaluating the B-spline basis, based on the use of so-called transition functions. Using the transition functions we develop general algorithms for knot-insertion, degree elevation and conversion to B\'ezier form, essential tools for applications in geometric modeling. We present numerical examples and briefly discuss how the same idea can be used in order to construct geometrically continuous multi-degree splines

    Polynomial spaces revisited via weight functions

    No full text
    167-198International audienceExtended Chebyshev spaces are natural generalisations of polynomial spaces due to the same upper bounds on the number of zeroes. In a natural approach, many results of the polynomial framework have been generalised to the larger Chebyshevian framework, concerning Approximation Theory as well as Geometric Design. In the present work, we go the reverse way: considering polynomial spaces as examples of Extended Chebyshev spaces, we apply to them results specifically developed in the Chebyshevian framework. On a closed bounded interval, each Extended Chebyshev space can be defined by means of sequences of generalised derivatives which play the same rôle as the ordinary derivatives for polynomials. We recently achieved an exhaustive description of the infinitely many such sequences. Surprisingly, this issue is closely related to the question of building positive linear operators of the Bernstein type. As Extended Chebyshev spaces, one can thus search for all generalised derivatives which can be associated with polynomials spaces on closed bounded intervals. Though this may a priori seem somewhat nonsensical due to the simplicity of the ordinary derivatives, this actually leads to new interesting results on polynomial and rational Bernstein operators and related results of convergence

    Tchebycheffian B-splines in isogeometric Galerkin methods

    Full text link
    Tchebycheffian splines are smooth piecewise functions whose pieces are drawn from (possibly different) Tchebycheff spaces, a natural generalization of algebraic polynomial spaces. They enjoy most of the properties known in the polynomial spline case. In particular, under suitable assumptions, Tchebycheffian splines admit a representation in terms of basis functions, called Tchebycheffian B-splines (TB-splines), completely analogous to polynomial B-splines. A particularly interesting subclass consists of Tchebycheffian splines with pieces belonging to null-spaces of constant-coefficient linear differential operators. They grant the freedom of combining polynomials with exponential and trigonometric functions with any number of individual shape parameters. Moreover, they have been recently equipped with efficient evaluation and manipulation procedures. In this paper, we consider the use of TB-splines with pieces belonging to null-spaces of constant-coefficient linear differential operators as an attractive substitute for standard polynomial B-splines and rational NURBS in isogeometric Galerkin methods. We discuss how to exploit the large flexibility of the geometrical and analytical features of the underlying Tchebycheff spaces according to problem-driven selection strategies. TB-splines offer a wide and robust environment for the isogeometric paradigm beyond the limits of the rational NURBS model.Comment: 35 pages, 18 figure

    A Tchebycheffian extension of multi-degree B-splines: Algorithmic computation and properties

    Full text link
    In this paper we present an efficient and robust approach to compute a normalized B-spline-like basis for spline spaces with pieces drawn from extended Tchebycheff spaces. The extended Tchebycheff spaces and their dimensions are allowed to change from interval to interval. The approach works by constructing a matrix that maps a generalized Bernstein-like basis to the B-spline-like basis of interest. The B-spline-like basis shares many characterizing properties with classical univariate B-splines and may easily be incorporated in existing spline codes. This may contribute to the full exploitation of Tchebycheffian splines in applications, freeing them from the restricted role of an elegant theoretical extension of polynomial splines. Numerical examples are provided that illustrate the procedure described
    corecore