20,417 research outputs found

    Polynomial Particular Solutions for Solving Elliptic Partial Differential Equations

    Get PDF
    In the past, polynomial particular solutions have been obtained for certain types of partial differential operators without convection terms. In this paper, a closed-form particular solution for more general partial differential operators with constant coefficients has been derived for polynomial basis functions. The newly derived particular solution is further coupled with the method of particular solutions (MPS) for numerically solving a large class of elliptic partial differential equations. In contrast to the use of Chebyshev polynomial basis functions, the proposed approach is more flexible in selecting the collocation points inside the domain. The polynomial basis functions are well-known for yielding ill-conditioned systems when their order becomes large. The multiple scale technique is applied to circumvent the difficulty of ill-conditioning problem. Five numerical examples are presented to demonstrate the effectiveness of the proposed algorithm

    Numerical Solution of Partial Differential Equations Using Polynomial Particular Solutions

    Get PDF
    Polynomial particular solutions have been obtained for certain types of partial differential operators without convection terms. In this dissertation, a closed-form particular solution for more general partial differential operators with constant coefficients has been derived for polynomial basis functions. The newly derived particular solutions are further coupled with the method of particular solutions (MPS) for numerically solving a large class of elliptic partial differential equations. In contrast to the use of Chebyshev polynomial basis functions, the proposed approach is more flexible in selecting the collocation points inside the domain. Polynomial basis functions are well-known for yielding ill-conditioned systems when their order becomes large. The multiple scale technique is applied to circumvent the difficulty of ill-conditioning. The derived polynomial particular solutions are also applied in the localized method of particular solutions to solve large-scale problems. Many numerical experiments have been performed to show the effectiveness of the particular solutions on this algorithm. As another part of the dissertation, a modified method of particular solutions (MPS) has been used for solving nonlinear Poisson-type problems defined on different geometries. Polyharmonic splines are used as the basis functions so that no shape parameter is needed in the solution process. The MPS is also applied to compute the sizes of critical domains of different shapes for a quenching problem. These sizes are compared with the sizes of critical domains obtained from some other numerical methods. Numerical examples are presented to show the efficiency and accuracy of the method

    A mixed â„“1\ell_1 regularization approach for sparse simultaneous approximation of parameterized PDEs

    Full text link
    We present and analyze a novel sparse polynomial technique for the simultaneous approximation of parameterized partial differential equations (PDEs) with deterministic and stochastic inputs. Our approach treats the numerical solution as a jointly sparse reconstruction problem through the reformulation of the standard basis pursuit denoising, where the set of jointly sparse vectors is infinite. To achieve global reconstruction of sparse solutions to parameterized elliptic PDEs over both physical and parametric domains, we combine the standard measurement scheme developed for compressed sensing in the context of bounded orthonormal systems with a novel mixed-norm based â„“1\ell_1 regularization method that exploits both energy and sparsity. In addition, we are able to prove that, with minimal sample complexity, error estimates comparable to the best ss-term and quasi-optimal approximations are achievable, while requiring only a priori bounds on polynomial truncation error with respect to the energy norm. Finally, we perform extensive numerical experiments on several high-dimensional parameterized elliptic PDE models to demonstrate the superior recovery properties of the proposed approach.Comment: 23 pages, 4 figure

    Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs

    Get PDF
    Algorithms are presented for the tanh- and sech-methods, which lead to closed-form solutions of nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to find exact polynomial solutions of ODEs and PDEs in terms of Jacobi's elliptic functions. For systems with parameters, the algorithms determine the conditions on the parameters so that the differential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi's sn or cn functions. Examples illustrate key steps of the algorithms. The new algorithms are implemented in Mathematica. The package DDESpecialSolutions.m can be used to automatically compute new special solutions of nonlinear PDEs. Use of the package, implementation issues, scope, limitations, and future extensions of the software are addressed. A survey is given of related algorithms and symbolic software to compute exact solutions of nonlinear differential equations.Comment: 39 pages. Software available from Willy Hereman's home page at http://www.mines.edu/fs_home/whereman

    Lie point symmetries and ODEs passing the Painlev\'e test

    Full text link
    The Lie point symmetries of ordinary differential equations (ODEs) that are candidates for having the Painlev\'e property are explored for ODEs of order n=2,…,5n =2, \dots ,5. Among the 6 ODEs identifying the Painlev\'e transcendents only PIIIP_{III}, PVP_V and PVIP_{VI} have nontrivial symmetry algebras and that only for very special values of the parameters. In those cases the transcendents can be expressed in terms of simpler functions, i.e. elementary functions, solutions of linear equations, elliptic functions or Painlev\'e transcendents occurring at lower order. For higher order or higher degree ODEs that pass the Painlev\'e test only very partial classifications have been published. We consider many examples that exist in the literature and show how their symmetry groups help to identify those that may define genuinely new transcendents
    • …
    corecore