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Polynomial Particular Solutions for Solving

Elliptic Partial Differential Equations

Thir Dangal ∗, C.S. Chen∗, Ji Lin †, ‡

Abstract

In the past, polynomial particular solutions have been obtained for certain
types of partial differential operators without convection terms. In this paper,
a closed-form particular solution for more general partial differential operators
with constant coefficients has been derived for polynomial basis functions. The
newly derived particular solution is further coupled with the method of particular
solutions (MPS) for numerically solving a large class of elliptic partial differential
equations. In contrast to the use of Chebyshev polynomial basis functions, the
proposed approach is more flexible in selecting the collocation points inside the
domain. The polynomial basis functions are well-known for yielding ill-conditioned
systems when their order becomes large. The multiple scale technique is applied
to circumvent the difficulty of ill-conditioning problem. Five numerical examples
are presented to demonstrate the effectiveness of the proposed algorithm.

Keywords: method of approximate particular solutions, polynomial basis function, mul-

tiple scale technique, particular solution, radial basis functions

1 Introduction

The derivation of particular solutions has played a key role for solving various types

of differential equations. In general, for a given differential equation, if the particular

∗Department of Mathematics, University of Southern Mississippi, Hattiesburg, MS 39406, USA
†State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, International

Center for Simulation Software in Engineering and Sciences, College of Mechanics and Materials, Hohai
University, Nanjing, 211100, China

‡Corresponding author: Ji Lin, Email: linji861103@126.com

1



solution and homogenous solution can be obtained, the problem is considered to be

solved [2]. However, it is a challenge to obtain a particular solution and the homogeneous

solution is not always available. It is well-known that the particular solution of a given

differential equation is not unique and there are numerous ways to find a particular

solution [1, 4, 6, 8, 11, 13] for various differential operators and basis functions.

Consider the following partial differential equation:

Lup(x, y) = f(x, y)

where L is a given linear differential operator with constant coefficients and f(x, y) is

a given function. For a general function f(x, y), the closed-form particular solution

up(x, y) is difficult, if not impossible, to obtain. Consequently, the approximate particu-

lar solution is often needed. Over the past two decades, many numerical methods have

been proposed for the approximation of the particular solution [3, 4, 5, 7, 8]. In recent

years, radial basis functions (RBFs) have been successfully employed for the construc-

tion of the approximate particular solutions. Due to the rapid development in this area,

the method of particular solutions has been established [3, 4, 14] in the context of RBFs

and has been applied for solving a large class of partial differential equations in science

and engineering. Despite the success of the use of RBFs, there are still challenges such

as the determination of the shape parameter of RBFs and the difficulty in deriving the

closed-form particular solutions [6, 11, 12, 15]. As a result, Chebyshev polynomial func-

tions have been adopted as an alternative to alleviate some of these difficulties [4, 5, 13].

These approaches have been proven to be highly accurate. However, the solution pro-

cedure is quite tedious and the closed-form particular solutions are only available for

some specific differential operators. One of the disadvantages of using Chebyshev poly-

nomials as the basis functions is the requirement that the forcing term of the differential

equation should be smoothly extendable to the exterior of the domain for the case of

non-rectangular domains. As such, the collocation points can be selected at the specific

Gauss-Lobatto points.

In this paper, the closed-form particular solution using the standard polynomial basis

function of order s {xi−jyj}, 0 ≤ i ≤ s, 0 ≤ j ≤ i, under a general linear differential

operator has been derived. Coupling with the MPS using the newly derived particular

solution, a large class of partial differential equations have been simulated. One of the

clear advantages of the proposed approach using the standard polynomial basis over the

Chebyshev polynomial basis is that the collocation points can be distributed arbitrarily

inside the computational domain without the need for fictitious collocation points outside
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the domain. Hence, the applicability of the proposed method is wider. Furthermore,

the proposed method can be easily coupled with the MPS which allows us to solve more

general types of partial differential equations.

It is known that the polynomial basis functions are notoriously unstable when the

order of the polynomial basis becomes higher. As a result, the polynomial basis functions

are not ideal for a global approach since the resultant matrix is extremely ill-conditioned

when the order of the polynomial basis is getting higher. Hence, our derived closed-form

particular solution is useless without proper treatment of the matrix resulting from

our formulation. There are various types of pre-conditioners in the literature. In this

paper, we adopt the so-called multiple scale technique [9, 10] which is a pre-conditioning

technique to reduce the condition number of the resultant matrix of the MPS. As we shall

see in our presented numerical results, the multiple scale technique is very effective for

the reduction of the condition number of our formulated matrix system and thus allows

our proposed algorithm to successfully solve various kinds of boundary value problems.

The paper is organized as follows. In Section 2, we derive the closed-form particular

solution for the general differential equation using polynomial basis functions. In Section

3, we give a brief review of the MPS in the context of polynomial basis functions. In

Section 4, the multiple scale technique is re-introduced to reduce the condition number

of the resultant matrix through the MPS and ensure the proposed method is effective.

In Section 5, we present the results of five numerical examples to demonstrate the effec-

tiveness of the proposed algorithm. Finally, some conclusions and ideas for future work

are outlined in Section 5.

2 Particular solution of polynomial basis

In this section, we consider a polynomial basis and find the particular solutions of the

basis functions for general partial differential operators. For simplicity, let us consider

the 2D case. It is well-known that a polynomial basis of degree ≤ s can be written as

follows:

P2
s = {xi−jyj : 0 ≤ j ≤ i, 0 ≤ i ≤ s}. (1)

Note that w = (s + 1)(s + 2)/2 is the number of polynomial basis functions in P2
s.

The superscript and subscript of P in equation (1) are the dimension of the considered

problem and the order of the polynomial basis functions, respectively.
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To illustrate the core idea of the proposed method, we shall give a simple example on

how to derive the particular solution explicitly for a general partial differential equation

with constant coefficients. Let us consider the following differential equation:

(L− 3I)up = x2y2, (2)

where

L =

(
∆ +

∂

∂x
+

∂

∂y

)
, (3)

and I is an identity operator. Equation (2) can be rewritten as follows:

(
I − L

3

)
(−3up) = x2y2. (4)

Since L is a differential operator, any polynomial of finite order can be annihilated

by L in finite times. In other words, we observe that Lm+n+1(xmyn) = 0. Hence, the

following identity always hold:

(
I − L5

35

)
x2y2 = x2y2.

By simple algebraic factorization, it follows that:

(
I − 1

3
L

)(
I +

L

3
+

L2

32
+

L3

33
+

L4

34

)
x2y2 = x2y2. (5)

Then, comparing the left hand side of (4) and (5), we have

−3up =

(
I +

L

3
+

L2

32
+

L3

33
+

L4

34

)
x2y2,

or

up =
−1

3

(
I +

L

3
+

L2

32
+

L3

33
+

L4

34

)
x2y2. (6)

The particular solution up in (6) is actually computable by simply taking the deriva-

tives and summing them up. Hence, the particular solution of (2) can be computed

explicitly as follows:

up = −1

3
x2y2 − 2

9
x2y − 2

9
xy2 − 8

27
x2 − 8

27
y2 − 8

27
xy − 4

9
x− 4

9
y − 56

81
.

Based on the above observation, we have the following theorem.
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Theorem 1. Consider a general form second order linear partial differential equation

in two variables with constant coefficients:

a1
∂2up

∂x2
+ a2

∂2up

∂x∂y
+ a3

∂2up

∂y2
+ a4

∂up

∂x
+ a5

∂up

∂y
+ a6up = xmyn, (7)

where {ai}6
i=1 are real constants, a6 6= 0 and m and n are positive integers. Then the

polynomial particular solution of (7) is given by

up =
1

a6

N∑

k=0

(−1

a6

)k

Lk(xmyn), (8)

where N = m + n and

L = a1
∂2

∂x2
+ a2

∂2

∂x∂y
+ a3

∂2

∂y2
+ a4

∂

∂x
+ a5

∂

∂y
.

Proof. Equation (7) can be written as

(L + a6I) up = xmyn, (9)

which implies (
I +

L

a6

)
(a6up) = xmyn. (10)

Since L is a differential operator containing various partial derivatives, it is clear

that Lm+n+1(xmyn) = 0. Hence, the following identity always holds:
(

I +

(
L

a6

)N+1
)

xmyn = xmyn, (11)

where N = m + n. By direct algebraic factorization, we have

I +

(
L

a6

)N+1

=

(
I +

L

a6

) N∑

k=0

(−1

a6

)k

Lk. (12)

From (11) and (12), we have

(
I +

L

a6

) N∑

k=0

(−1

a6

)k

Lk(xmyn) = xmyn. (13)

Comparing (10) and (13), it follows that

a6up =
N∑

k=0

(−1

a6

)k

Lk(xmyn).
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Consequently, the particular solution up for the above general differential operator is

given by

up =
1

a6

N∑

k=0

(−1

a6

)k

Lk(xmyn). (14)

The following algorithm is presented for finding the particular solution of the basis

function xmyn for the above operator.

Algorithm 1

Step 1: Let p(x, y) = xmyn, m,n: nonnegative integers.

Step 2: Let partsol = 0, coef = 1,

and L = a1
∂2

∂x2 + a2
∂2

∂x∂y
+ a3

∂2

∂y2 + a4
∂
∂x

+ a5
∂
∂y

.

for k = 1, 2, ..., m + n

term = Lp

coef = -coef/a6

partsol = partsol + coef * term

p = term

end

Step 3: The required particular solution of xmyn for

the operator L is given by
1

a6

(partsol + xmyn).

3 The method of particular solutions (MPS)

Once the particular solution of the associated differential operator is available, the

method of particular solutions (MPS) can be employed to solve the boundary value

problem related to the differential operator. In this section, we will give a brief review

of the MPS. Let f(x, y) and g(x, y) be given functions. Consider the following boundary

value problem

Lu(x, y) = f(x, y), (x, y) ∈ Ω, (15)

Bu(x, y) = g(x, y), (x, y) ∈ Γ, (16)

where L is a linear elliptic partial differential operator, B is a boundary differential

operator, and Ω is a closed and bounded domain with boundary Γ.
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To discretize the given partial differential equation, we employ the MPS using a poly-

nomial basis. In the MPS, we assume that the solution of (15)–(16) can be represented

by:

u(x, y) ' û(x, y) =
s∑

i=0

i∑
j=0

aiju
ij
p (x, y), (17)

where

Luij
p (x, y) = xi−jyj, 0 ≤ j ≤ i, 0 ≤ i ≤ s. (18)

Let {(xi, yi)}
ni

i=1 be the set of interior points in the domain Ω and {(xi, yi)}n
i=ni+1 be the

boundary points on Γ, and n = ni + nb. Applying (17) to (15), we obtain

s∑
i=0

i∑
j=0

aijLuij
p (xk, yk) = f(xk, yk), k = 1, 2, ..., ni. (19)

From (18), the above equation becomes

s∑
i=0

i∑
j=0

aijx
i−j
k yj

k = f(xk, yk), k = 1, 2, ..., ni. (20)

In the MPS, the governing differential equation (15) has been transformed to a simple

data interpolation problem as shown in (20). Imposing (17) to satisfy the boundary

condition (16), we obtain

s∑
i=0

i∑
j=0

aijBuij
p (xk, yk) = g(xk, yk), k = ni + 1, ni + 2, ..., n. (21)

To ensure that the system of equations (20) – (21) is solvable, the total number of

collocation points n has to be larger than (s + 1)(s + 2)/2. The method of least squares

will be adopted to solve the above system. Once the undetermined coefficients

{aij} = {a00, a10, a11, a20, a21, a22, · · · , ass}

are determined, the approximate solution û can be obtained from (17).

4 Multiple Scale Technique
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High order polynomials are notorious for numerical interpolation due to the severe ill-

conditioning of the resulting matrix. The MPS using polynomials as basis functions has

experienced the same difficulty and a special treatment of the resultant matrix system

(20) – (21) is required. To alleviate this difficulty, a multiple scale technique [9, 10] is

applied to reduce the condition number of the resulting matrix.

Let w = (s + 1)(s + 2)/2. Equations (20) – (21) can be written in the matrix form

Ac = b, (22)

where

A =




[
xi−jyj

]
ni×w

[
Buij

p

]
nb×w


 , c =




a00

a10

...

ass




,b =




f(x1, y1)
...

f(xni
, yni

)

g(xni+1
, yni+1)
...

g(xn, yn)




.

Let

A = [A1 A2 · · · Aw] and Rk = ‖Ak‖2, k = 1, 2, · · · , w,

where Ak is the kth column of matrix A. In the multiple scale technique, the linear

system (22) is equivalent to

Ã c̃ = b, (23)

where

Ã =

[
A1

R1

A2

R2

· · · Aw

Rw

]

and

c̃ = [ã00 ã10 · · · ãss]
T

= [a00R1 a10R2 · · · assRw]T . (24)

Note that Ã is now better conditioned due to the reduction of round-off errors. Once

(23) is solved, the {aij} in c can be recovered from c̃ in (24); i.e.,

a00 =
ã00

R1

, a10 =
ã10

R2

, · · · , ass =
ãss

Rw

.

We refer readers to references [9, 10] and the references cited therein for further

details.
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5 Numerical Results

To validate our proposed MPS algorithm using a polynomial basis, five numerical exam-

ples in 2D are given. For the numerical implementation, we have considered both regular

and irregular domains. The parametric equations of the first three irregular boundaries

∂Ω are defined as follows:

∂Ω = {(x, y)|x = r(ϑ) cos(σ(ϑ)), y = r(ϑ) sin(σ(ϑ)), 0 ≤ ϑ < 2π} ,

where

•
r(ϑ) = esin ϑ sin2(2ϑ) + ecos ϑ cos2(2ϑ) (25)

is the amoeba-like boundary.

•
r(ϑ) =

(
cos(4ϑ) +

√
18

5
− sin2(4ϑ)

)1/3

(26)

is the Cassini-shaped domain.

•
r(ϑ) = 2 +

1

2
sin(6ϑ), σ(ϑ) = ϑ +

1

2
sin(6ϑ) (27)

is the gear-shaped domain.

Two additional domains in which the parametric equations are not available considered

in this section are the L-shaped and the corner-shaped domains. The profiles of these

domains are shown in Figure 1.

The root-mean-squared error (RMSE), the root-mean-squared error of the derivative

with respect to x (RMSEx), the maximum absolute error (MAE), and the relative error

(Rel Err) are used to measure the accuracy of the solutions. They are defined as follows

RMSE =

√√√√ 1

nt

nt∑
j=1

(ûj − uj)2,

RMSEx =

√√√√ 1

nt

nt∑
j=1

(
∂ûj

∂x
− ∂uj

∂x
)2,
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MAE = max
1≤j≤nt

|ûj − uj|

and

Rel Err =

√∑nt

j=1(ûj − uj)2

∑nt

j=1 u2
j

where nt is the number of test points in the domain and ûj and uj are the approximate

solution and exact solution at the jth test point, respectively.

The generation of the particular solutions in (8) with respect to all polynomial basis

functions requires symbolic computation. In the spirit of reproductive research, we

provide a MATLAB c© code in the Appendix for the generation of the particular solution

with the differential operator shown in Example 4. Prior to solving the partial differential

equation, we symbolically compute and save all the particular solutions in a table for

later use since the generation of a particular solution as shown in Algorithm 1 is the most

time consuming part of the solution process. Once the polynomial particular solution

is produced and saved in a table, the given boundary value problem can be solved

efficiently.

Example 1. In this example, we consider the following differential equation in the unit

square.

∆u(x, y)− ∂2u(x, y)

∂x∂y
+

∂u(x, y)

∂y
− u(x, y) = f(x, y), (x, y) ∈ Ω, (28)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω, (29)

where f(x, y) and g(x, y) are given based on the following analytical solution

u(x, y) = e2x cos(y), (x, y) ∈ Ω.

The number of interior points, boundary points and the test points are 400, 108 and

230 respectively. In Figure 2, we show the condition number and RMSE for various

orders of the polynomial basis functions with and without the use of the multiple scale

technique. From these figures, we clearly see that the multiple scale technique plays an

important role in the reduction of the condition number of the collocation matrix. We

also observe the improvement of the accuracy when using higher order polynomial basis.

One important feature of the proposed algorithm is the numerical stability. When the

order of polynomial basis becomes higher, the numerical accuracy remains stable. It is
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clear that without implementing the multiple scale technique, the proposed approach

would fail due to an extremely high condition number.

Table 1 shows the RMSE and maximum errors for various sets of interior and bound-

ary points with a polynomial basis of order 11. From this table, we observe that the

increasing of the interior and boundary points does not contribute to the increasing of

accuracy. In contrast, Figure 2 shows that the increasing of the order of the polynomial

basis function significantly improves the accuracy. For a polynomial basis with order

11, there are (11+1)(11+2)/2=78 basis functions. Hence, the minimum number of the

interior and boundary points should be at least 78. From the first row of Table 1, it is

shown that we can achieve good accuracy using only 80 interior points and 20 boundary

points. It is noted here that it takes 76.64 seconds for generating the particular solu-

tions of 30 order of the polynomial basis functions while it takes less than one second for

obtaining the numerical approximations as shown in Table 1. Since the computational

cost is relatively low for such a small number of collocation points, we will double this

number in the numerical implementation.

Table 1: Example 1: The RMSE and Maximum errors for different numbers of interior

and boundary points with polynomial basis of order 11.

(ni, nb) RMSE MAE Elapsed time

(81, 20) 5.265e− 08 4.530e− 07 1.847e− 01

(121, 28) 6.405e− 08 1.760e− 07 1.870e− 01

(169, 64) 5.749e− 10 2.389e− 09 2.096e− 01

(361, 88) 1.666e− 09 5.702e− 09 2.238e− 01

(576, 116) 8.325e− 09 2.497e− 08 2.342e− 01

(1089, 316) 1.468e− 08 4.912e− 08 2.430e− 01

(1444, 556) 6.749e− 09 2.658e− 08 2.527e− 01

(2304, 636) 2.056e− 08 7.318e− 08 2.639e− 01

Since the multiple scale technique is essential in overcoming the ill-conditioning of

the resultant matrix and meanwhile improves the numerical accuracy, we will continue

to use such a technique in the rest of the examples in this section.
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Example 2. Let us consider the following Helmholtz problem:

∆u(x, y) + u(x, y) = f(x, y), (x, y) ∈ Ω, (30)

u(x, y = g(x, y), (x, y) ∈ ∂Ω, (31)

where f(x, y) and g(x, y) are given based on the following analytical solution

u(x, y) = sin(2x) cos(2y), (x, y) ∈ Ω.

The domain is the amoeba-like domain as shown in Figure 1(a).

For the numerical approximation, the number of interior points, boundary points

and test points are 412, 100 and 257 respectively. As we have mentioned in the previous

example, the number of collocation points depends on the order of the polynomial basis

functions. For simplicity, we choose the same number of collocation points for the

case of polynomial order equal to 30. To demonstrate the effectiveness of the proposed

algorithm, we make a comparison with the MPS using the MQ (Multiquadric) radial

basis function. In Figure 3, we observe that our proposed approach is not only more

accurate but also more stable than the MPS using MQ. As shown in Figure 3(b), the

higher order of polynomial does not cause any problem in stability due to the use of

multiple scale scheme. On the other hand, the uncertainty of the shape parameter as

shown in Figure 3(a) is an additional challenge for the MPS using radial basis functions.

Example 3. Let us consider the following mixed boundary value problem:

∆u(x, y) + u(x, y) = f(x, y), (x, y) ∈ Ω, (32)

u(x, y) = g(x, y), (x, y) ∈ ∂ΩD, (33)

∂u

∂n
= ∇u · n, (x, y) ∈ ∂ΩN , (34)

where n is the unit outward normal vector, f(x, y) and g(x, y) are given based on the

following analytical solution

u(x, y) = e2x+2y, (x, y) ∈ Ω.

The boundaries ∂ΩD and ∂ΩN denote the boundaries on which the Dirichlet and Neu-

mann conditions are applied respectively such that ∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅.
As shown in Figure 4, ∂ΩN is located in the fourth quadrant; i.e., 3π/2 ≤ θ < 2π.

In the numerical implementation, we choose 545 uniformly distributed interior points,

116 points on the Dirichlet boundary, 34 points on the Neumann boundary, and 350

randomly selected test points inside the domain.

12



We observed the similar results in accuracy and stability for the previous example.

Due to the mixed boundary conditions, the accuracy is even more sensitive to the shape

parameter in the case of the MPS using MQ as shown in Figure 5(a). On the other

hand, as shown in Figure 5(b), not only the accuracy using a polynomial basis is much

better than the MPS using MQ but also the stability, which is extremely important in

the numerical computation.

Example 4. In this example, we perform the numerical tests on various geometric

domains as shown in Figure 1. We consider the following partial differential equation.

2
∂2u(x, y)

∂x2
+ 3

∂2u(x, y)

∂x∂y
+ 3

∂2u(x, y)

∂y2
+ 7u(x, y) = f(x, y), (x, y) ∈ Ω, (35)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω, (36)

where f(x, y) and g(x, y) are given based on the following analytical solution

u(x, y) = e2x+3y, (x, y) ∈ Ω.

In Table 2, we present results for five different irregular domains as shown in Figure

1. Since the area of these five domains are quite different, the maximum forcing terms

and exact solutions have large discrepancy. Hence, it is more appropriate to use relative

error to measure the accuracy of our computation. Overall, from Table 2, it appears that

the smoothness of the boundary has little impact on the numerical accuracy. The order

of polynomial remains to be a dominating factor on the performance of the proposed

algorithm.

Table 2: Example 4: RMSE and relative error (Rel Err) for different computational

domains.

Domains ni nb RMSE Rel Err Polynomial Order

Amoeba 294 100 2.072e-06 6.974e-09 18

Cassini 313 100 6.430e-08 4.892e-09 17

Gear-Shaped 296 100 5.952e-05 1.562e-07 21

L-shaped 300 96 2.641e-10 6.443e-11 13

Corner-Shaped 330 90 8.867e-08 2.979e-09 13
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Example 5. In this example, we consider the following fourth order boundary value

problem from [15]:

(∆2 − 100)u(x, y) = f(x, y), (x, y) ∈ Ω, (37)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω, (38)

∆u(x, y) = h(x, y), (x, y) ∈ ∂Ω, (39)

where f(x, y), g(x, y), and h(x, y) are given based on the following analytical solution:

u(x, y) = sin(πx) cosh(y)− cos(πx) sinh(y), (x, y) ∈ Ω.

The computational domain is the Cassini (three) as shown in Figure 4.

In order to compare our results to those of [15], we choose the same number of

collocation points in both approaches. To measure the numerical accuracy, we choose

230 random test points to compute the errors. In Table 3, we observe that the proposed

algorithm is far more accurate than the results obtained in [15] where polyharmonic

splines of order 3 were used. In this example, the proposed algorithm is also very

effective for solving fourth order partial differential equations in an irregular domain.

Table 3: Example 5: Comparison of RMSE and RMSEx with polynomial basis functions

and polyharmonic splines.

Polyharmonic Splines (r6 ln r) Polynomial Basis Functions

(ni, nb) RMSE RMSEx RMSE RMSEx order

(126,80) 2.440e-05 8.585e-05 8.382e-11 2.968e-10 22

(208,140) 5.887e-06 3.482e-05 5.441e-12 1.539e-11 23

(374,200) 1.643e-06 1.710e-05 3.605e-13 1.295e-12 23

6 Conclusions

In this work, polynomial particular solutions for the general linear differential operators

with constant coefficients have been derived. This is a further improvement of the previ-

ous work [5, 8] where the differential operator contains no convective terms. Instead of

confining the collocation points on the Gauss-Lobatto points in a rectangular domain,

14



we are allowed to choose the collocation points in an arbitrary fashion using our pro-

posed algorithm. A multiple scale technique is required to alleviate the ill-conditioning

problem. Since the polynomial particular solution is available, the MPS can be easily

employed to solve various types of elliptic partial differential equations. Another ad-

vantage of the proposed algorithm is that there is no parameter to be adjusted and the

algorithm is very stable and highly accurate. Once the particular solutions are generated

and stored in a table, the computation is very efficient.

With further study, it is possible to extend our proposed algorithm to solving partial

differential equations with variable coefficients and 3D problems. The relaxation on the

condition a6 6= 0 in Theorem 1 is also an open research topic. The current paper has

opened up some more outstanding research topics that are currently under investigation

by our research group.
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Appendix

The following MATLAB c© code is based on Algorithm 1 to generate all the particular

solutions corresponding to polynomial basis functions for the differential operator shown

in Example 4. By symbolic computation, we save all these particular solutions in a table

for the efficient computation of particular solutions in the MPS.

syms x y

order = 30; % highest order of polynomial basis

par=cell(order+1,order+1);

count=0;

for i=0:order

for j=0:i

p1=x.^(i-j).*y.^j;

15



p=p1;

sum1=0; coef=1;

for k=1:i

newp=2*diff(p,x,2)+3*diff(diff(p,x,1),y,1)+3*diff(p,y,2);

coef=-coef/7;

sum1=sum1+coef*newp;

p=newp;

end

sum1=(1/7)*(sum1+p1);

par{j+1,i+1}=inline(sum1,’x’,’y’);

end

end

save (’par_30.mat’, ’par’)
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Figure 1: The profiles of the computational domains.

18



0 5 10 15 20 25 30
10

0

10
20

10
40

10
60

Polynomial Order

C
on

di
tio

n 
N

um
be

r

 

 

With Multiscale
Without Multiscale

0 10 20 30
10

−10

10
−5

10
0

Polynomial Order
R

M
S

E

 

 

With Multiscale
Without Multiscale

Figure 2: Example 1: The profiles of condition numbers and RMSE with and without

using multiple scale technique.
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Figure 3: Example 2: (a) RMSE versus the shape parameter using RBF. (b) RMSE

versus the polynomial order using polynomial basis.
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Figure 5: Example 3: (a) RMSE versus the shape parameter of the MQ. (b) RMSE

versus the polynomial order.
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