5 research outputs found

    Optimal Remote State Estimation for Self-Propelled Particle Models

    Full text link
    We investigate the design of a remote state estimation system for a self-propelled particle (SPP). Our framework consists of a sensing unit that accesses the full state of the SPP and an estimator that is remotely located from the sensing unit. The sensing unit must pay a cost when it chooses to transmit information on the state of the SPP to the estimator; and the estimator computes the best estimate of the state of the SPP based on received information. In this paper, we provide methods to design transmission policies and estimation rules for the sensing unit and estimator, respectively, that are optimal for a given cost functional that combines state estimation distortion and communication costs. We consider two notions of optimality: joint optimality and person-by-person optimality. Our main results show the existence of a jointly optimal solution and describe an iterative procedure to find a person-by-person optimal solution. In addition, we explain how the remote estimation scheme can be applied to tracking of animal movements over a costly communication link. We also provide experimental results to show the effectiveness of the scheme.Comment: a part of the article was submitted to IEEE Conference on Decision and Control 201

    Correct-By-Construction Control Synthesis for Systems with Disturbance and Uncertainty

    Full text link
    This dissertation focuses on correct-by-construction control synthesis for Cyber-Physical Systems (CPS) under model uncertainty and disturbance. CPSs are systems that interact with the physical world and perform complicated dynamic tasks where safety is often the overriding factor. Correct-by-construction control synthesis is a concept that provides formal performance guarantees to closed-loop systems by rigorous mathematic reasoning. Since CPSs interact with the environment, disturbance and modeling uncertainty are critical to the success of the control synthesis. Disturbance and uncertainty may come from a variety of sources, such as exogenous disturbance, the disturbance caused by co-existing controllers and modeling uncertainty. To better accommodate the different types of disturbance and uncertainty, the verification and control synthesis methods must be chosen accordingly. Four approaches are included in this dissertation. First, to deal with exogenous disturbance, a polar algorithm is developed to compute an avoidable set for obstacle avoidance. Second, a supervised learning based method is proposed to design a good student controller that has safety built-in and rarely triggers the intervention of the supervisory controller, thus targeting the design of the student controller. Third, to deal with the disturbance caused by co-existing controllers, a Lyapunov verification method is proposed to formally verify the safety of coexisting controllers while respecting the confidentiality requirement. Finally, a data-driven approach is proposed to deal with model uncertainty. A minimal robust control invariant set is computed for an uncertain dynamic system without a given model by first identifying the set of admissible models and then simultaneously computing the invariant set while selecting the optimal model. The proposed methods are applicable to many real-world applications and reflect the notion of using the structure of the system to achieve performance guarantees without being overly conservative.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145933/1/chenyx_1.pd

    Proactive defense for evolving cyber threats.

    Full text link

    Robust Control of Nonlinear Systems with applications to Aerial Manipulation and Self Driving Cars

    Get PDF
    This work considers the problem of planning and control of robots in an environment with obstacles and external disturbances. The safety of robots is harder to achieve when planning in such uncertain environments. We describe a robust control scheme that combines three key components: system identification, uncertainty propagation, and trajectory optimization. Using this control scheme we tackle three problems. First, we develop a Nonlinear Model Predictive Controller (NMPC) for articulated rigid bodies and apply it to an aerial manipulation system to grasp object mid-air. Next, we tackle the problem of obstacle avoidance under unknown external disturbances. We propose two approaches, the first approach using adaptive NMPC with open- loop uncertainty propagation and the second approach using Tube NMPC. After that, we introduce dynamic models which use Artificial Neural Networks (ANN) and combine them with NMPC to control a ground vehicle and an aerial manipulation system. Finally, we introduce a software framework for integrating the above algorithms to perform complex tasks. The software framework provides users with the ability to design systems that are robust to control and hardware failures where preventive action is taken before-hand. The framework also allows for safe testing of control and task logic in simulation before evaluating on the real robot. The software framework is applied to an aerial manipulation system to perform a package sorting task, and extensive experiments demonstrate the ability of the system to recover from failures. In addition to robust control, we present two related control problems. The first problem pertains to designing an obstacle avoidance controller for an underactuated system that is Lyapunov stable. We extend a standard gyroscopic obstacle avoidance controller to be applicable to an underactuated system. The second problem addresses the navigation of an Unmanned Ground Vehicle (UGV) on an unstructured terrain. We propose using NMPC combined with a high fidelity physics engine to generate a reference trajectory that is dynamically feasible and accounts for unsafe areas in the terrain

    Polynomial approximation of optimal event triggers for state estimation problems using SOSTOOLS

    No full text
    corecore