3,555 research outputs found

    A SAT-based System for Consistent Query Answering

    Full text link
    An inconsistent database is a database that violates one or more integrity constraints, such as functional dependencies. Consistent Query Answering is a rigorous and principled approach to the semantics of queries posed against inconsistent databases. The consistent answers to a query on an inconsistent database is the intersection of the answers to the query on every repair, i.e., on every consistent database that differs from the given inconsistent one in a minimal way. Computing the consistent answers of a fixed conjunctive query on a given inconsistent database can be a coNP-hard problem, even though every fixed conjunctive query is efficiently computable on a given consistent database. We designed, implemented, and evaluated CAvSAT, a SAT-based system for consistent query answering. CAvSAT leverages a set of natural reductions from the complement of consistent query answering to SAT and to Weighted MaxSAT. The system is capable of handling unions of conjunctive queries and arbitrary denial constraints, which include functional dependencies as a special case. We report results from experiments evaluating CAvSAT on both synthetic and real-world databases. These results provide evidence that a SAT-based approach can give rise to a comprehensive and scalable system for consistent query answering.Comment: 25 pages including appendix, to appear in the 22nd International Conference on Theory and Applications of Satisfiability Testin

    A Dichotomy on the Complexity of Consistent Query Answering for Atoms with Simple Keys

    Full text link
    We study the problem of consistent query answering under primary key violations. In this setting, the relations in a database violate the key constraints and we are interested in maximal subsets of the database that satisfy the constraints, which we call repairs. For a boolean query Q, the problem CERTAINTY(Q) asks whether every such repair satisfies the query or not; the problem is known to be always in coNP for conjunctive queries. However, there are queries for which it can be solved in polynomial time. It has been conjectured that there exists a dichotomy on the complexity of CERTAINTY(Q) for conjunctive queries: it is either in PTIME or coNP-complete. In this paper, we prove that the conjecture is indeed true for the case of conjunctive queries without self-joins, where each atom has as a key either a single attribute (simple key) or all attributes of the atom

    Priority-Based Conflict Resolution in Inconsistent Relational Databases

    Full text link
    We study here the impact of priorities on conflict resolution in inconsistent relational databases. We extend the framework of repairs and consistent query answers. We propose a set of postulates that an extended framework should satisfy and consider two instantiations of the framework: (locally preferred) l-repairs and (globally preferred) g-repairs. We study the relationships between them and the impact each notion of repair has on the computational complexity of repair checking and consistent query answers

    From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

    Get PDF
    In this work we establish and investigate connections between causes for query answers in databases, database repairs wrt. denial constraints, and consistency-based diagnosis. The first two are relatively new research areas in databases, and the third one is an established subject in knowledge representation. We show how to obtain database repairs from causes, and the other way around. Causality problems are formulated as diagnosis problems, and the diagnoses provide causes and their responsibilities. The vast body of research on database repairs can be applied to the newer problems of computing actual causes for query answers and their responsibilities. These connections, which are interesting per se, allow us, after a transition -inspired by consistency-based diagnosis- to computational problems on hitting sets and vertex covers in hypergraphs, to obtain several new algorithmic and complexity results for database causality.Comment: To appear in Theory of Computing Systems. By invitation to special issue with extended papers from ICDT 2015 (paper arXiv:1412.4311
    • …
    corecore