21,674 research outputs found

    Detecting Simultaneous Integer Relations for Several Real Vectors

    Full text link
    An algorithm which either finds an nonzero integer vector m{\mathbf m} for given tt real nn-dimensional vectors x1,...,xt{\mathbf x}_1,...,{\mathbf x}_t such that xiTm=0{\mathbf x}_i^T{\mathbf m}=0 or proves that no such integer vector with norm less than a given bound exists is presented in this paper. The cost of the algorithm is at most O(n4+n3logλ(X)){\mathcal O}(n^4 + n^3 \log \lambda(X)) exact arithmetic operations in dimension nn and the least Euclidean norm λ(X)\lambda(X) of such integer vectors. It matches the best complexity upper bound known for this problem. Experimental data show that the algorithm is better than an already existing algorithm in the literature. In application, the algorithm is used to get a complete method for finding the minimal polynomial of an unknown complex algebraic number from its approximation, which runs even faster than the corresponding \emph{Maple} built-in function.Comment: 10 page

    Algorithms in algebraic number theory

    Get PDF
    In this paper we discuss the basic problems of algorithmic algebraic number theory. The emphasis is on aspects that are of interest from a purely mathematical point of view, and practical issues are largely disregarded. We describe what has been done and, more importantly, what remains to be done in the area. We hope to show that the study of algorithms not only increases our understanding of algebraic number fields but also stimulates our curiosity about them. The discussion is concentrated of three topics: the determination of Galois groups, the determination of the ring of integers of an algebraic number field, and the computation of the group of units and the class group of that ring of integers.Comment: 34 page

    Parallel integer relation detection: techniques and applications

    Get PDF
    For guidance on citations see FAQs. c ○ [not recorded] Version: [not recorded] Link(s) to article on publisher’s website

    New Shortest Lattice Vector Problems of Polynomial Complexity

    Full text link
    The Shortest Lattice Vector (SLV) problem is in general hard to solve, except for special cases (such as root lattices and lattices for which an obtuse superbase is known). In this paper, we present a new class of SLV problems that can be solved efficiently. Specifically, if for an nn-dimensional lattice, a Gram matrix is known that can be written as the difference of a diagonal matrix and a positive semidefinite matrix of rank kk (for some constant kk), we show that the SLV problem can be reduced to a kk-dimensional optimization problem with countably many candidate points. Moreover, we show that the number of candidate points is bounded by a polynomial function of the ratio of the smallest diagonal element and the smallest eigenvalue of the Gram matrix. Hence, as long as this ratio is upper bounded by a polynomial function of nn, the corresponding SLV problem can be solved in polynomial complexity. Our investigations are motivated by the emergence of such lattices in the field of Network Information Theory. Further applications may exist in other areas.Comment: 13 page

    A kilobit hidden SNFS discrete logarithm computation

    Get PDF
    We perform a special number field sieve discrete logarithm computation in a 1024-bit prime field. To our knowledge, this is the first kilobit-sized discrete logarithm computation ever reported for prime fields. This computation took a little over two months of calendar time on an academic cluster using the open-source CADO-NFS software. Our chosen prime pp looks random, and p1p--1 has a 160-bit prime factor, in line with recommended parameters for the Digital Signature Algorithm. However, our p has been trapdoored in such a way that the special number field sieve can be used to compute discrete logarithms in F_p\mathbb{F}\_p^* , yet detecting that p has this trapdoor seems out of reach. Twenty-five years ago, there was considerable controversy around the possibility of back-doored parameters for DSA. Our computations show that trapdoored primes are entirely feasible with current computing technology. We also describe special number field sieve discrete log computations carried out for multiple weak primes found in use in the wild. As can be expected from a trapdoor mechanism which we say is hard to detect, our research did not reveal any trapdoored prime in wide use. The only way for a user to defend against a hypothetical trapdoor of this kind is to require verifiably random primes
    corecore