10,980 research outputs found

    On Brambles, Grid-Like Minors, and Parameterized Intractability of Monadic Second-Order Logic

    Full text link
    Brambles were introduced as the dual notion to treewidth, one of the most central concepts of the graph minor theory of Robertson and Seymour. Recently, Grohe and Marx showed that there are graphs G, in which every bramble of order larger than the square root of the treewidth is of exponential size in |G|. On the positive side, they show the existence of polynomial-sized brambles of the order of the square root of the treewidth, up to log factors. We provide the first polynomial time algorithm to construct a bramble in general graphs and achieve this bound, up to log-factors. We use this algorithm to construct grid-like minors, a replacement structure for grid-minors recently introduced by Reed and Wood, in polynomial time. Using the grid-like minors, we introduce the notion of a perfect bramble and an algorithm to find one in polynomial time. Perfect brambles are brambles with a particularly simple structure and they also provide us with a subgraph that has bounded degree and still large treewidth; we use them to obtain a meta-theorem on deciding certain parameterized subgraph-closed problems on general graphs in time singly exponential in the parameter. The second part of our work deals with providing a lower bound to Courcelle's famous theorem, stating that every graph property that can be expressed by a sentence in monadic second-order logic (MSO), can be decided by a linear time algorithm on classes of graphs of bounded treewidth. Using our results from the first part of our work we establish a strong lower bound for tractability of MSO on classes of colored graphs

    Improved Bounds for the Excluded-Minor Approximation of Treedepth

    Get PDF
    Treedepth, a more restrictive graph width parameter than treewidth and pathwidth, plays a major role in the theory of sparse graph classes. We show that there exists a constant C such that for every integers a,b >= 2 and a graph G, if the treedepth of G is at least Cab log a, then the treewidth of G is at least a or G contains a subcubic (i.e., of maximum degree at most 3) tree of treedepth at least b as a subgraph. As a direct corollary, we obtain that every graph of treedepth Omega(k^3 log k) is either of treewidth at least k, contains a subdivision of full binary tree of depth k, or contains a path of length 2^k. This improves the bound of Omega(k^5 log^2 k) of Kawarabayashi and Rossman [SODA 2018]. We also show an application for approximation algorithms of treedepth: given a graph G of treedepth k and treewidth t, one can in polynomial time compute a treedepth decomposition of G of width O(kt log^{3/2} t). This improves upon a bound of O(kt^2 log t) stemming from a tradeoff between known results. The main technical ingredient in our result is a proof that every tree of treedepth d contains a subcubic subtree of treedepth at least d * log_3 ((1+sqrt{5})/2)
    • …
    corecore