14,009 research outputs found

    Investigations into the molecular effects of single nucleotide polymorphism

    Get PDF
    Objectives: DNA sequences are very rich in short repeats and their pattern can be altered by point mutations. We wanted to investigate the effect of single nucleotide polymorphism (SNP) on the pattern of short DNA repeats and its biological consequences. Methods: Analysis of the pattern of short DNA repeats of the Thy-1 sequence with and without SNP. Searching for DNA-binding factors in any region of significance. Results: Comparing the pattern of short repeats in the Thy-1 gene sequences of Turkish patients with ataxia telangiectasia (AT) with the `wild type' sequence from the DNA database, we identified a missing 8-bp repeat element due to an SNP in position 1271 (intron II) in AT-DNA sequences. Only the mutated sequence had the potential for the formation of a stem loop in DNA or pre-mRNA. In super-shift experiments we found that DNA oligomers covering the area of this SNP formed a complex with proteins amongst which we identified the proliferating cell nuclear antigen (PCNA) protein. Conclusion: SNPs have the potential to alter DNA or pre-mRNA conformation. Although no SNP-depeding formation of the DNA-protein complex was evident, future investigations could reveal differential molecular mechanisms of cellular regulation. Copyright (C) 2001 S. Karger AG, Basel

    On the trail of a new virus. The Calvert Lecture 1997.

    Get PDF

    An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles.

    Get PDF
    The tumor necrosis factor (TNF) alpha gene lies within the class III region of the major histocompatibility complex (MHC), telomeric to the class II and centromeric to the class I region. We have recently described the first polymorphism within the human TNF-alpha locus. This is biallelic and lies within the promoter region. Frequency analysis of the TNF-alpha polymorphism, using the polymerase chain reaction and single-stranded conformational polymorphism, in HLA-typed individuals, reveals a very strong association between the uncommon TNF allele and HLA A1, B8, and DR3 alleles. This is the first association between TNF-alpha and other MHC alleles and raises the possibility that the uncommon TNF-alpha allele may contribute to the many autoimmune associations of the A1,B8,DR3 haplotype

    Molecular dynamics as an approach to study prion protein misfolding and the effect of pathogenic mutations

    Get PDF
    Computer simulation of protein dynamics offers unique high-resolution information that complements experiment. Using experimentally derived structures of the natively folded prion protein (PrP), physically realistic dynamics and conformational changes can be simulated, including the initial steps of misfolding. By introducing mutations in silico, the effect of pathogenic mutations on PrP conformation and dynamics can be assessed. Here, we briefly introduce molecular dynamics methods and review the application of molecular dynamics simulations to obtain insight into various aspects of the PrP, including the mechanism of misfolding, the response to changes in the environment, and the influence of disease-related mutations

    Novel mutations in the toll like receptor genes cause hyporesponsiveness to Mycobacterium avium subsp. paratuberculosis infection

    Get PDF
    Toll like receptors play a central role in the recognition of pathogen associated molecular patterns (PAMPs). Mutations in TLR1, TLR2 and TLR4 genes may change the PAMP reorganization ability which causes altered responsiveness to the bacterial pathogens. A case control study, performed to assess the association between TLR gene mutations and susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP), revealed novel mutations (TLR1 - Ser150Gly and Val220Met; TLR2 - Phe670Leu) that hindered either PAMP recognition or further downstream TLR pathway activation. A cytokine expression experiments (IL-4, IL-8, IL-10, IL-12 and IFN-γ) in the challenged mutant and wild type moDCs (mocyte derived dendritic cells) confirmed the negative impact of these mutations and altered TLR downstream activation. Further In silico analysis of the TLR1 and TLR4 ectodomains (ECD) revealed the polymorphic nature of the central ECD and irregularities in the central LRR motifs. The most critical positions that may alter the pathogen recognition ability of TLR were: the 9th amino acid position in LRR motif (TLR1, LRR10) and 4th residue downstream to LRR domain (exta LRR region of TLR4). The study describes novel mutations in the TLRs and presents their association with the MAP infection

    Pathogenic mutations in the hydrophobic core of the human prion protein can promote structural instability and misfolding

    Get PDF
    Transmissible spongiform encephalopathies, or prion diseases, are caused by misfolding and aggregation of the prion protein PrP. These diseases can be hereditary in humans and four of the many disease-associated missense mutants of PrP are in the hydrophobic core: V180I, F198S, V203I and V210I. The T183A mutation is related to the hydrophobic core mutants as it is close to the hydrophobic core and known to cause instability. We have performed extensive molecular dynamics simulations of these five PrP mutants and compared their dynamics and conformations to wild-type PrP. The simulations highlight the changes that occur upon introduction of mutations and help to rationalize experimental findings. Changes can occur around the mutation site, but they can also be propagated over long distances. In particular, the F198S and T183A mutations lead to increased flexibility in parts of the structure that are normally stable, and the short β-sheet moves away from the rest of the protein. Mutations V180I, V210I and, to a lesser extent, V203I cause changes similar to those observed upon lowering the pH, which has been linked to misfolding. Early misfolding is observed in one V180I simulation. Overall, mutations in the hydrophobic core have a significant effect on the dynamics and stability of PrP, including the propensity to misfold, which helps to explain their role in the development of familial prion diseases

    Encapsulation of a polymer by an icosahedral virus

    Full text link
    The coat proteins of many viruses spontaneously form icosahedral capsids around nucleic acids or other polymers. Elucidating the role of the packaged polymer in capsid formation could promote biomedical efforts to block viral replication and enable use of capsids in nanomaterials applications. To this end, we perform Brownian dynamics on a coarse-grained model that describes the dynamics of icosahedral capsid assembly around a flexible polymer. We identify several mechanisms by which the polymer plays an active role in its encapsulation, including cooperative polymer-protein motions. These mechanisms are related to experimentally controllable parameters such as polymer length, protein concentration, and solution conditions. Furthermore, the simulations demonstrate that assembly mechanisms are correlated to encapsulation efficiency, and we present a phase diagram that predicts assembly outcomes as a function of experimental parameters. We anticipate that our simulation results will provide a framework for designing in vitro assembly experiments on single-stranded RNA virus capsids.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Physical Biology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is expected to be published online in November 201
    corecore