947 research outputs found

    Compositional Explanation of Types and Algorithmic Debugging of Type Errors

    Get PDF
    The type systems of most typed functional programming languages are based on the Hindley-Milner type system. A practical problem with these type systems is that it is often hard to understand why a program is not type correct or a function does not have the intended type. We suggest that at the core of this problem is the difficulty of explaining why a given expression has a certain type. The type system is not defined compositionally. We propose to explain types using a variant of the Hindley-Milner type system that defines a compositional type explanation graph of principal typings. We describe how the programmer understands types by interactive navigation through the explanation graph. Furthermore, the explanation graph can be the foundation for algorithmic debugging of type errors, that is, semi-automatic localisation of the source of a type error without even having to understand the type inference steps. We implemented a prototype of a tool to explore the usefulness of the proposed methods

    No value restriction is needed for algebraic effects and handlers

    Full text link
    We present a straightforward, sound Hindley-Milner polymorphic type system for algebraic effects and handlers in a call-by-value calculus, which allows type variable generalisation of arbitrary computations, not just values. This result is surprising. On the one hand, the soundness of unrestricted call-by-value Hindley-Milner polymorphism is known to fail in the presence of computational effects such as reference cells and continuations. On the other hand, many programming examples can be recast to use effect handlers instead of these effects. Analysing the expressive power of effect handlers with respect to state effects, we claim handlers cannot express reference cells, and show they can simulate dynamically scoped state

    Bidirectionalization for Free with Runtime Recording: Or, a Light-Weight Approach to the View-Update Problem

    Get PDF
    A bidirectional transformation is a pair of mappings between source and view data objects, one in each direction. When the view is modified, the source is updated accordingly with respect to some laws. Over the years, a lot of effort has been made to offer better language support for programming such transformations. In particular, a technique known as bidirectionalization is able to analyze and transform unidirectional programs written in general purpose languages, and "bidirectionalize" them. Among others, a technique termed as semantic bidirectionalization proposed by Voigtländer stands out in term of user-friendliness. The unidirectional program can be written using arbitrary language constructs, as long as the function is polymorphic and the language constructs respect parametricity. The free theorems that follow from the polymorphic type of the program allow a kind of forensic examination of the transformation, determining its effect without examining its implementation. This is convenient, in the sense that the programmer is not restricted to using a particular syntax; but it does require the transformation to be polymorphic. In this paper, we lift this polymorphism requirement to improve the applicability of semantic bidirectionalization. Concretely, we provide a type class PackM γ α μ, which intuitively reads "a concrete datatype γ is abstracted to a type α, and the 'observations' made by a transformation on values of type γ are recorded by a monad μ". With PackM, we turn monomorphic transformations into polymorphic ones, that are ready to be bidirectionalized. We demonstrate our technique with a case study of standard XML queries, which were considered beyond semantic bidirectionalization because of their monomorphic nature

    The Sketch of a Polymorphic Symphony

    Full text link
    In previous work, we have introduced functional strategies, that is, first-class generic functions that can traverse into terms of any type while mixing uniform and type-specific behaviour. In the present paper, we give a detailed description of one particular Haskell-based model of functional strategies. This model is characterised as follows. Firstly, we employ first-class polymorphism as a form of second-order polymorphism as for the mere types of functional strategies. Secondly, we use an encoding scheme of run-time type case for mixing uniform and type-specific behaviour. Thirdly, we base all traversal on a fundamental combinator for folding over constructor applications. Using this model, we capture common strategic traversal schemes in a highly parameterised style. We study two original forms of parameterisation. Firstly, we design parameters for the specific control-flow, data-flow and traversal characteristics of more concrete traversal schemes. Secondly, we use overloading to postpone commitment to a specific type scheme of traversal. The resulting portfolio of traversal schemes can be regarded as a challenging benchmark for setups for typed generic programming. The way we develop the model and the suite of traversal schemes, it becomes clear that parameterised + typed strategic programming is best viewed as a potent combination of certain bits of parametric, intensional, polytypic, and ad-hoc polymorphism

    Strategic polymorphism requires just two combinators!

    Get PDF
    In previous work, we introduced the notion of functional strategies: first-class generic functions that can traverse terms of any type while mixing uniform and type-specific behaviour. Functional strategies transpose the notion of term rewriting strategies (with coverage of traversal) to the functional programming paradigm. Meanwhile, a number of Haskell-based models and combinator suites were proposed to support generic programming with functional strategies. In the present paper, we provide a compact and matured reconstruction of functional strategies. We capture strategic polymorphism by just two primitive combinators. This is done without commitment to a specific functional language. We analyse the design space for implementational models of functional strategies. For completeness, we also provide an operational reference model for implementing functional strategies (in Haskell). We demonstrate the generality of our approach by reconstructing representative fragments of the Strafunski library for functional strategies.Comment: A preliminary version of this paper was presented at IFL 2002, and included in the informal preproceedings of the worksho

    Towards Parameterized Regular Type Inference Using Set Constraints

    Full text link
    We propose a method for inferring \emph{parameterized regular types} for logic programs as solutions for systems of constraints over sets of finite ground Herbrand terms (set constraint systems). Such parameterized regular types generalize \emph{parametric} regular types by extending the scope of the parameters in the type definitions so that such parameters can relate the types of different predicates. We propose a number of enhancements to the procedure for solving the constraint systems that improve the precision of the type descriptions inferred. The resulting algorithm, together with a procedure to establish a set constraint system from a logic program, yields a program analysis that infers tighter safe approximations of the success types of the program than previous comparable work, offering a new and useful efficiency vs. precision trade-off. This is supported by experimental results, which show the feasibility of our analysis

    Compositional explanation of types and algorithmic debugging of type errors

    Get PDF
    corecore