12,265 research outputs found

    Answer-Type Modification without Tears: Prompt-Passing Style Translation for Typed Delimited-Control Operators

    Full text link
    The salient feature of delimited-control operators is their ability to modify answer types during computation. The feature, answer-type modification (ATM for short), allows one to express various interesting programs such as typed printf compactly and nicely, while it makes it difficult to embed these operators in standard functional languages. In this paper, we present a typed translation of delimited-control operators shift and reset with ATM into a familiar language with multi-prompt shift and reset without ATM, which lets us use ATM in standard languages without modifying the type system. Our translation generalizes Kiselyov's direct-style implementation of typed printf, which uses two prompts to emulate the modification of answer types, and passes them during computation. We prove that our translation preserves typing. As the naive prompt-passing style translation generates and passes many prompts even for pure terms, we show an optimized translation that generate prompts only when needed, which is also type-preserving. Finally, we give an implementation in the tagless-final style which respects typing by construction.Comment: In Proceedings WoC 2015, arXiv:1606.0583

    The Java system dependence graph

    Get PDF
    The Program Dependence Graph was introduced by Ottenstein and Ottenstein in 1984 [14]. It was suggested to be a suitable internal program representation for monolithic programs, for the purpose of carrying out certain software engineering operations such as slicing and the computation of program metrics. Since then, Horwitz et al. have introduced the multi-procedural equivalent System Dependence Graph [9]. Many authors have proposed object-oriented dependence graph construction approaches [11, 10, 20, 12]. Every approach provides its own benefits, some of which are language specific. This paper is based on Java and combines the most important benefits from a range of approaches. The result is a Java System Dependence Graph, which summarises the key benefits offered by different approaches and adapts them (if necessary) to the Java language

    On the Pursuit of Static and Coherent Weaving

    Get PDF
    Aspect-oriented programming (AOP) has been shown to be a useful model for software development. Special care must be taken when we try to adapt AOP to strongly typed functional languages which come with features like type inference mechanism, polymorphic types, higher-order functions and type-scoped pointcuts. Specifically, it is highly desirable that weaving of aspect-oriented functional programs can be performed statically and coherently. In [13], we showed a type-directed weaver which resolves all advice chainings coherently at static time. The novelty of this paper lies in the extended framework which supports static and coherent weaving in the presence of polymorphic recursive functions, advising advice bodies and higher-order advices
    corecore