75,230 research outputs found

    Copper(0)-mediated radical polymerisation in a self-generating biphasic system

    Get PDF
    Herein, we demonstrate the synthesis of well-defined poly(n-alkyl acrylate)s via copper(0)-mediated radical polymerisation in a self-generating biphasic system. During the polymerisation of n-butyl acrylate in DMSO, the polymer phase separates to yield a polymer-rich layer with very low copper content (ICP-MS analysis: 0.016 wt%). The poly(n-butyl acrylate) has been characterized by a range of techniques, including GPC, NMR and MALDI-TOF, to confirm both the controlled character of the polymerisation and the end group fidelity. Moreover, we have successfully chain extended poly(n-butyl acrylate) in this biphasic system several times with n-butyl acrylate to high conversion without intermediate purification steps. A range of other alkyl acrylates have been investigated and the control over the polymerisation is lost as the hydrophobicity of the polymer increases due to the increase in alkyl chain length indicating that it is important for the monomer to be soluble in the polar solvent

    Interactions between N-linked glycosylation and polymerisation of neuroserpin within the endoplasmic reticulum

    Get PDF
    The neuronal serpin neuroserpin undergoes polymerisation as a consequence of point mutations that alter its conformational stability, leading to a neurodegenerative dementia called familial encephalopathy with neuroserpin inclusion bodies (FENIB). Neuroserpin is a glycoprotein with predicted glycosylation sites at asparagines 157, 321 and 401. We used site-directed mutagenesis, transient transfection, western blot, metabolic labelling and ELISA to probe the relationship between glycosylation, folding, polymerisation and degradation of neuroserpin in validated cell models of health and disease. Our data show that glycosylation at N157 and N321 plays an important role in maintaining the monomeric state of neuroserpin, and we propose this is the result of steric hindrance or effects on local conformational dynamics that can contribute to polymerisation. Asparagine residue 401 is not glycosylated in wild type neuroserpin and in several polymerogenic variants that cause FENIB, but partial glycosylation was observed in the G392E mutant of neuroserpin that causes severe, early-onset dementia. Our findings indicate that N401 glycosylation reports lability of the C-terminal end of neuroserpin in its native state. This C-terminal lability is not required for neuroserpin polymerisation in the endoplasmic reticulum, but the additional glycan facilitates degradation of the mutant protein during proteasomal impairment. In summary, our results indicate how normal and variant-specific N-linked glycosylation events relate to intracellular folding, misfolding, degradation and polymerisation of neuroserpin

    Process modelling of a PVC production plant

    Get PDF
    This paper presents the modelling of a Polyvinyl Chloride (PVC) resins manufacturing process with batch process simulator, SuperPro Designer V6.0. The simulation model has been developed based on the operating condition of a local PVC manufacturing plant. As the polymerisation process is carried out in batch operation mode, efforts have been made to document the scheduling details of each unit operation and results are presented in the Gantt chart. Cycle time for a complete polymerisation process is determined to be 14.28 hours. The model also reveals that approximately 17 batches of polymerisation reaction can be processed per day, which tallies the real operation of the PVC manufacturing plant

    On the Kinetics of Body versus End Evaporation and Addition of Supramolecular Polymers

    Get PDF
    Although pathway-specific kinetic theories are fundamentally important to describe and understand reversible polymerisation kinetics, they come in principle at a cost of having a large number of system-specific parameters. Here, we construct a dynamical Landau theory to describe the kinetics of activated linear supramolecular self-assembly, which drastically reduces the number of parameters and still describes most of the interesting and generic behavior of the system in hand. This phenomenological approach hinges on the fact that if nucleated, the polymerisation transition resembles a phase transition. We are able to describe hysteresis, overshooting, undershooting and the existence of a lag time before polymerisation takes off, and pinpoint the conditions required for observing these types of phenomenon in the assembly and disassembly kinetics. We argue that the phenomenological kinetic parameter in our theory is a pathway controller, i.e., it controls the relative weights of the molecular pathways through which self-assembly takes place

    Influence of polymerisation conditions on the properties of polymer/clay nanocomposite hydrogels

    Get PDF
    Free-radical polymerisation of acrylamide derivatives in the presence of exfoliated clay platelets has recently emerged as a new technique for the synthesis of strong and tough nanocomposite hydrogels (NCHs) with a unique hybrid organic/inorganic network structure. The central intent of many research studies in the field of NCHs conducted so far was to change hydrogel properties with the introduction of various clays and variation of the clay content. Here, we demonstrate that the properties of NCHs significantly vary depending on initiating conditions used for hydrogel synthesis via in situ polymerisation in solutions of high monomer concentrations (above 1 mol L-1 ). A unique, complementary combination of real-time dynamic rheology and pulsed NMR/MRI has been used to study the influence of the composition of a redox initiating system on the gelation process and hydrogel properties. The molar ratio of the persulphate initiator to tertiary amine activator affects the polymerisation kinetics, morphology and mechanical properties of the hydrogels. We further show that activator-dominated systems tend to produce hydrogels with higher storage modulus and lower water intake. This trend is attributed to the increase in the cross-linking degree. From the analysis of the water state in NCH and hydrogels prepared with and without an organic cross-linker, it was concluded that clay platelets did not form covalent bonds with polymer molecules but contributed to the formation of a physical network. There is evidence of self-crosslinking of polymer chains during acrylamide polymerisation at high monomer concentration. The composition of the initiating system influences the number of formed self-crosslinks

    Membrane synthesis by microemulsion polymerisation stabilised by commercial non-ionic surfactants

    Get PDF
    Earlier works had demonstrated that microemulsion polymerisation is a well suited technique to produce nanostructured membranes if surfmers (polymerisable surfactants) are used to stabilise the primary template (sponge phase microemulsion). Up to now, however; same hadn't been done using common surfactants. Present work aims to show this is possible if proper surfactants are selected. Specific formulation selection was done by means of phase diagram. Phase diagram was obtained by conductivity, surface tension and QELS measurements through several dilution lines. Polymerisation region was selected from phase diagram were no globular system was observed. Membranes were characterised by SEM, DSC and permeation experiment

    An antibody raised against a pathogenic serpin variant induces mutant-like behaviour in the wild-type protein.

    Get PDF
    A monoclonal antibody (mAb) that binds to a transient intermediate may act as a catalyst for the corresponding reaction; here we show this principle can extend on a macro-molecular scale to the induction of mutant-like oligomerisation in a wild-type protein. Using the common, pathogenic Glu342Lys (Z) variant of α1-antitrypsin as antigen - whose native state is susceptible to the formation of a proto-oligomeric intermediate - we have produced a mAb (5E3) that increases the rate of oligomerisation of the wild-type (M) variant. Employing ELISA, gel shift, thermal stability and FRET time-course experiments, we show that mAb5E3 does not bind to the native state of α1-antitrypsin, but recognises a cryptic epitope in the vicinity of the post-helix A loop and strand 4C that is revealed upon transition to the polymerisation intermediate, and which persists in the ensuing oligomer. This epitope is not shared by loop-inserted monomeric conformations. We show the increased amenity to polymerisation by either the pathogenic Glu342Lys mutation or the binding of mAb5E3 occurs without affecting energetic barrier to polymerisation. As mAb5E3 also does not alter the relative stability of the monomer to intermediate, it acts in a manner similar to the Glu342Lys mutation, by facilitating the conformational interchange between these two states

    Quantum dot-labelled polymer beads by suspension polymerisation

    Get PDF
    CdSe quantum dots with polymerisable ligands have been incorporated into polystyrene beads, via a suspension polymerisation reaction, as a first step towards the optical encoding of solid supports for application in solid phase organic chemistry

    Symmetry-breaking in chiral polymerisation

    Get PDF
    We propose a model for chiral polymerisation and investigate its symmetric and asymmetric solutions. The model has a source species which decays into left- and right-handed types of monomer, each of which can polymerise to form homochiral chains; these chains are susceptible to `poisoning' by the opposite handed monomer. Homochiral polymers are assumed to influence the proportion of each type of monomer formed from the precursor. We show that for certain parameter values a positive feedback mechanism makes the symmetric steady-state solution unstable. The kinetics of polymer formation are then analysed in the case where the system starts from zero concentrations of monomer and chains. We show that following a long induction time, extremely large concentrations of polymers are formed for a short time, during this time an asymmetry introduced into the system by a random external perturbation may be massively amplified. The system then approaches one of the steady-state solutions described above.Comment: 26pages, 6 Figure

    Structure, bonding and morphology of hydrothermally synthesised xonotlite

    No full text
    The authors have systematically investigated the role of synthesis conditions upon the structure and morphology of xonotlite. Starting with a mechanochemically prepared, semicrystalline phase with Ca/Si=1, the authors have prepared a series of xonotlite samples hydrothermally, at temperatures between 200 and 250 degrees C. Analysis in each case was by X-ray photoelectron spectroscopy, environmental scanning electron microscopy and X-ray diffraction. The authors’ use of a much lower water/solid ratio has indirectly confirmed the ‘through solution’ mechanism of xonotlite formation, where silicate dissolution is a key precursor of xonotlite formation. Concerning the role of temperature, too low a temperature (~200 degrees C) fails to yield xonotlite or leads to increased number of structural defects in the silicate chains of xonotlite and too high a temperature (>250 degrees C) leads to degradation of the xonotlite structure, through leaching of interchain calcium. Synthesis duration meanwhile leads to increased silicate polymerisation due to diminishing of the defects in the silicate chains and more perfect crystal morphologies
    corecore