
 

On the kinetics of body versus end evaporation and addition of
supramolecular polymers
Citation for published version (APA):
Tiwari, N., & van der Schoot, P. P. A. M. (2017). On the kinetics of body versus end evaporation and addition of
supramolecular polymers. European Physical Journal E, 40(6), 1-12. Article 65.
https://doi.org/10.1140/epje/i2017-11554-0

DOI:
10.1140/epje/i2017-11554-0

Document status and date:
Published: 26/06/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1140/epje/i2017-11554-0
https://doi.org/10.1140/epje/i2017-11554-0
https://research.tue.nl/en/publications/e32de3dd-63ab-40d7-8527-b54b7d7d5460


DOI 10.1140/epje/i2017-11554-0

Regular Article

Eur. Phys. J. E (2017) 40: 65 THE EUROPEAN
PHYSICAL JOURNAL E

On the kinetics of body versus end evaporation and addition of
supramolecular polymers

Nitin S. Tiwari1,a and Paul van der Schoot1,2

1 Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2 Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

Received 2 June 2017
Published online: 26 June 2017
c© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract. The kinetics of the self-assembly of supramolecular polymers is dictated by how monomers,
dimers, trimers etc., attach to and detach from each other. It is for this reasons that researchers have
proposed a plethora of pathways to explain the kinetics of various self-assembling supramolecules, including
sulfur, linear micelles, living polymers and protein fibrils. Recent observations hint at the importance of
a hitherto ignored molecular aggregation pathway that we refer to as “body evaporation and addition”. In
this pathway, monomers can enter at or dissociate from any point along the backbone of the polymer. In
this paper, we compare predictions for the well-established end evaporation and addition pathway with
those that we obtained for the newly proposed body evaporation and addition model. We quantify the lag
time, characteristic of nucleated reversible polymerisation, in terms of the time it takes to obtain half of the
steady-state polymerised fraction and the apparent growth rate at that point, and obtain power laws for
both as a function of the total monomer concentration. We find, perhaps not entirely unexpectedly, that
the body evaporation and addition pathway speeds up the relaxation of the polymerised monomeric mass
relative to that of the end evaporation and addition. However, the presence of the body evaporation and
addition pathway does not affect the dependence of the lag time on the total monomer concentration and
it remains the same as that for the case of end evaporation and addition. The scaling of the lag time with
the forward rate is different for the two models, suggesting that they may be distinguished experimentally.

1 Introduction

Supramolecular polymerisation processes are of immense
importance in biology and in chemistry [1]. Some classic
examples in biology include actin and microtubule self-
assembly that play important roles in the context of the
mechanics of the cell, and β-amyloid and prion protein ag-
gregation implicated in neuro-degenerative diseases [2–6].
Similarly, supramolecular polymerisation has major appli-
cations in the chemistry of medicine and in molecular elec-
tronics [7]. In this light, it is not surprising that researchers
have long studied the thermodynamic and kinetics of self-
assembly. As the time evolution of self-assembly is very
much system specific, in particular the early-time kinet-
ics, itself the most extensively studied aspect of reversible
polymerisation, a whole host of molecular pathways of
supramolecular self-assembly have been proposed [8–10].

It is generally believed that Oosawa was the first to
suggest a model in the context of the polymerisation of
actin filaments, where a monomer can be added to or re-
moved from the ends [8, 10]. Oosawa’s model has one im-
portant ingredient, known as nucleation. This means that
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a stable critical nucleus of nc ≥ 1 monomers must be
formed before polymer growth commences. Although Oo-
sawa’s model of self-assembly is in agreement with experi-
mental data in the context of actin polymerisation, it fails
to describe many other protein aggregation processes [11].
Indeed, the prevalent molecular pathway for self-assembly
is dictated by the complex molecular structure of the
monomers involved, as well as by the type of bonding
between monomers that form a polymer. This results in
molecular pathways that are more complex than the sim-
ple pathway proposed by Oosawa, which is sometimes also
referred to as end evaporation and addition [12–14].

In the context of the living polymerisation or linear
polymers, researchers proposed a plethora of pathways by
which self-assembly can occur, e.g., polymer scission and
recombination [15–17], secondary nucleation [10, 18] and
two-stage nucleation [19]. Further work shows that the
kinetics of self-assembly is strongly dependent on which
of the above mentioned pathways are active in the as-
sembly process [11]. The influence molecular aggregation
pathways have on the early-time kinetics of linear self-
assembly, which is the most studied aspect of the problem
in hand, motivates researchers to study and characterize
all possible pathways [10,18–21].
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Fig. 1. Schematic showing the effect of body evaporation and
addition pathway on the mixing and growth of differently dye-
labeled, but otherwise identical, monomers at time t = 0. Note
the homogeneous insertion of black monomers along the green
polymer backbone and vice versa via the free monomers in the
solution.

With the aim to probe the molecular pathway respon-
sible for linear self-assembly in the context of supramolec-
ular polymerisation, Albertazzi et al. recently performed
experiments with a self-assembling molecule known as
1,3,5 benzenetricarboxamide or BTA for short [22]. By
imaging the supramolecular polymers at different assem-
bly times, they were able to investigate monomer mixing
on the scale of individual polymers. Because their observa-
tions could not be explained by any of the hitherto known
molecular pathways, they suggested the need to revisit
theoretically and experimentally the dynamic behaviour
of supramolecular polymers. From their observations, they
conclude that the molecular pathway responsible for self-
assembly of BTAs is the one in which the monomer can be
removed from and inserted anywhere along the polymer
backbone.

We have schematically depicted the novel pathway in
fig. 1. At time t = 0 the solution contains only two types
of supramolecular homopolymer, and as time progresses
mixing of monomers occurs at the supramolecular level.
However, contrary to crowding of differently labeled
monomers at the ends, which is to be expected if
monomers can only attach on and detach from the ends,
the mixing takes place homogeneously along the polymer
backbone. We call their proposed pathway the “body
evaporation and addition” pathway to contrast it with
the conventional end evaporation and addition pathway,
and study theoretically the kinetics of this pathway in the
presence of the scission and recombination pathway and
primary nucleation [8]. The molecular pathway scission
and recombination allows polymers to break at any point
on the backbone resulting into two smaller polymers
and recombining two polymers into a longer polymer.
Primary nucleation is the mechanism by which a critical
number of monomers spontaneously self-assemble to form
the shortest stable polymer [8].

Many researchers have concluded that the time evolu-
tion of the length distribution of living polymers is typi-
cally a mixture of molecular pathways, which are switched
on and off depending on the system of interest [20,23,24].
It is for this reason that we study the kinetics of the
newly proposed pathway in combination with the molec-
ular pathways already referred to. At first glance, body
evaporation and addition pathway looks similar to end

evaporation and addition, and naively one would perhaps
presume that a simple renormalisation of the rate con-
stants can account for the former. However, a closer look
at the problem reveals that for end evaporation and ad-
dition every polymer has only two ends, resulting into a
probability of addition or removal of monomer at the ends
that plausibly is independent of the length of the polymer.
In contrast, in the case of body evaporation and addition
the probability of adding or removing a monomer is pro-
portional to the number of bonds in a polymer in which a
monomer is being added. Hence, the addition or removal of
a monomer along the polymer backbone in the body evapo-
ration and addition depends on the size of that particular
polymer. As the size of an individual polymer changes as
a function of time, it is not possible to simply renormalise
the rate constants associated with body evaporation and
addition pathway and expect it to behave like end evapo-
ration and addition.

To study the kinetics of linear self-assembly we start
by writing the discrete rate equations. However, the rate
equations are highly nonlinear and have so far eluded
an exact analytical solution except in a few limiting
cases [10,23]. Hence, we study the kinetics of self-assembly
by closing the discrete reaction rate equations by insisting
on plausible approximations. This way, we obtain dynam-
ical equations for the first two moments of the polymer
length distribution. These are the number of polymers
and the polymerised monomeric mass, of which the latter
is primarily probed in assembly experiments [18, 20, 25].
We obtain asymptotic analytical solutions of the result-
ing dynamical equations. From our analytical solutions we
quantify the early-time kinetics and show that the scal-
ing of the lag time with the total monomer concentration
is identical to that of the standard end evaporation and
addition pathway even in the presence of the proposed
body evaporation and addition. However, the lag time sig-
nificantly does decreases with increasing predominance of
body evaporation and addition pathway. We also show that
when only one of the two addition and evaporation path-
ways is present, the half-time and the apparent growth
rate differ in their scaling with the forward rate constants
of monomer insertion.

The remainder of this paper is organised as follows:
in sect. 2, we introduce the moment equations for the
generalized molecular pathway and study the equilibrium
properties of the two moments of the length distribution.
In sect. 3, the dynamical equations for the moments are
solved in the absence of polymer recombination and in the
limit of vanishing fragmentation and nucleation rate con-
stants. The analytical solutions are then compared with
numerical solutions, and used to calculate the half-time
and the apparent growth rate for the polymerisation kinet-
ics. Finally, in sect. 4, we discuss the results and findings
of our theoretical analysis.

2 Master equations and moment equations

The molecular pathways that we include in our study are
i) primary nucleation, ii) end evaporation and addition,
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iii) body evaporation and addition and iv) scission and
recombination [9, 19, 21]. Our moment equations, derived
from the generalized rate equations, allow us to probe the
quantitative role of the various molecular pathways in-
volved. The molecular pathway of interest can in princi-
ple always be made dominant by switching off other path-
ways completely or asymptotically. In order to study the
kinetics of nucleated polymerisation we first transform the
molecular pathways into the corresponding reaction rep-
resentation:

i) primary nucleation

ncx
k+

n−−⇀↽−−
k−

n

ync
, (1)

ii) end evaporation and addition

yi + x
2k+

e−−⇀↽−−
2k−

e

yi+1, (2)

iii) body evaporation and addition

yi + x
k+

b (i−1)−−−−−⇀↽−−−−−
k−

b (i−1)
yi+1, (3)

iv) scission and recombination

yi + yj

k+
f−−⇀↽−−

k−
f

yi+j for i, j ≤ nc, (4)

where x and yi are the concentration of monomers and
that of polymers of degree of polymerisation i, respec-
tively, and nc is the critical nucleus size, i.e., the degree
of polymerisation of the smallest stable polymer. Further-
more, k+

n , k−
n , k+

e , k−
e , k+

b , k−
b , k+

f and k−
f are the rates

of the nucleus formation and disintegration (subscript n),
the monomer addition and removal from the ends (sub-
script e), the rates of the monomer addition and removal
from the polymer backbone excluding the ends (subscript
b) and the polymer recombination and scission (subscript
f). The factor of i−1 in reaction iii), describing body evap-
oration and addition, accounts for the fact that a monomer
can be added in i−1 places on the backbone a polymer of
size i, and that any one of i−1 monomers can be removed
from a polymer of size i+1 because removal from the ends
is forbidden for this pathway.

The reactions are assumed to be reaction limited
rather that diffusion limited, implying that the reaction
rates are constant in time. The indices i and j for reac-
tion iv) obey i, j ≥ nc, where nc ≥ 2. We consider the
case nc ≥ 2 in order to be able to close the sums in the
master equation and obtain the dynamical equations for
the first two principal moments of the polymer length dis-
tribution. In the case nc ≥ 2, a monomer is not counted
as a polymer, whereas for nc = 1, a monomer can be an
active monomer, i.e., a polymer of size one, or an inactive
monomer. Hence, the master equations for nc ≥ 2 are fun-
damentally different from that for nc = 1 polymerisation.

One additional assumption that we employ in order to
close the sums in our master equations is that we assume
k−

n = k−
e . Later we will see that this approximation does

not alter our results because in order to be able to close
our discrete master equation, we neglect disintegration of
a nuclei via the end evaporation and addition pathway.
Our approximation of irreversible nucleus formation has
been employed in the past by several researchers and the
results have been quantitatively compared with the ex-
perimental data on protein polymerisation, justifying our
approximation [18,20,23].

Before we delve deeper into our analysis, a few remarks
should be made. In principle, we consider four mechanisms
that are responsible for the time evolution of the length
distribution: the primary nucleation, the end evaporation
and addition, the body evaporation and addition and the
scission and recombination pathway. Our goal in this work
is very specific and is to compare the early-time kinetics
of the two pathways of interest, which are the end evap-
oration and addition and the body evaporation and addi-
tion. However, if we do not include the scission and re-
combination pathway, the resulting dynamical equations
will be singular, meaning that we can make a parame-
ter corresponding to this pathway small but never put
it to zero. Hence, it is for purely mathematical reasons
that we make use of the most general description that
formally includes all the aforementioned pathways. This
is also the reason why we implement primary nucleation.
To make the problem mathematically tractable we work
in the limit of strongly nucleated systems, where for the
time domain of our interest the primary nucleation step is
not functional and hence can be ignored for all practical
purposes. This said, we will explain in detail all of our
approximations and limitations, as and when they come
in this paper.

To derive a closed form of the moment equations, we
start with the discrete master equation for the reaction
schemes defined above. For the polymers, this yields

dyi(t)
dt

=k+
n x(t)ncδi,nc

+ 2k+
e x(t)yi−1(t) − 2k+

e x(t)yi(t)

+2k−
e yi+1(t) − 2k−

e yi(t) + k+
b (i − 2)x(t)yi−1

−k+
b (i − 1)x(t)yi + k−

b (i − 1)yi+1 − k−
b (i − 2)yi

−k−
f (i − 2nc + 1)yi(t) + 2k−

f

∞∑

j=i+nc

yj(t)

+k+
f

∑

k+l=i

yk(t)yl(t) − 2k+
f yi(t)

∞∑

j=nc

yj , (5)

where the first term on the right-hand side of eq. (5) ac-
counts for the formation of the critical nucleus, the next
four terms stem from the end evaporation and addition
pathway, and terms six to nine represent the body evapora-
tion and addition. The last four terms result from scission
and recombination. Here, δi,nc

denotes Kronecker delta
that acquires value of 1 when i = nc and is zero otherwise.
Notice that in eq. (5) is missing the term for nucleus dis-
integration. This is due to our approximation of k−

n = k−
e
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that allows the nucleus to disintegrate via monomer re-
moval from an end hence the nucleus disintegration term
gets absorbed in the end evaporation terms.

The factor of (i − 2nc + 1) in the tenth term on the
right-hand side of eq. (5) accounts for the number of bonds
allowed to break such that the fragmenting filaments are
larger than the nucleus size nc. It should be mentioned
that the same term, in principle, should include a fac-
tor of θ(i − 2nc). However, this factor would prevent us
from closing the summations and obtaining the dynami-
cal equations for the first two moments of the full polymer
length distribution. Hence, we choose not to include it in
our master equation. As a consequence, an inconsistency
arises for the dimers and trimers, at least if we focus on
the case of nc = 2. Indeed, this choice would in princi-
ple allow a dimer and a trimer to break via the polymer
scission mechanism, yet this is disallowed in our way of
implementation of reaction schemes. The reason is that in
our final analysis we set the limit of k−

f → 0, justifying our
approximation. Lastly, in the eleventh term, i.e., polymer
scission term, the lower limit i + nc makes sure that two
fragments post-scission are stable polymers of size greater
than or equal to nc. The condition of the conservation of
mass finally results into a time-dependent equation for the
monomers

dx(t)
dt

= − d
dt

( ∞∑

i=nc

iyi(t)

)
. (6)

Equation (5) is different from previously obtained mas-
ter equations on account of the additional terms that de-
scribe the contribution of the body evaporation k−

b and
addition k+

b [10, 23]. We also implement the scission and
recombination pathway to allow for polymer fragmenta-
tion resulting only into fragments greater than or equal
to the critical size; the recombining polymers also have to
be of the size i ≥ nc. The reason for this is that we as-
sume that any fragment of size l ≤ nc is highly unstable
and quickly disintegrates to l monomers. This prohibits
the recombination of fragments smaller than the critical
nucleus, as they do not exist in a polymeric state. Addi-
tionally, by disallowing the fragmentation that results in
a fragment smaller than the critical size we prevent this
step from contributing to the free monomeric pool. As a
consequence, we completely decouple the end evaporation
and addition from the scission and recombination path-
way, i.e., one of the pathways can be switched on or off
without affecting the other [10].

Our master equations, as those very much like that
discussed at length in the literature, are highly nonlinear
equations, and have so far eluded an exact analytical so-
lution [18]. Hence, a standard practice in the field is not
to study the full length distribution, but only the first two
moments of it [8,10]. These are the polymer concentration,
P , and the polymerised monomeric mass, M . The dimen-
sionality of both are in moles per liter if the rate constants
are given in molar units. Of these two quantities, the lat-
ter quantity is readily measured by means of, e.g., circular
dichroism or fluorescence microscopy [25,26]. The number

concentration of polymers can in principle be quantified
by measuring the mean size of the polymers, using tech-
niques such as static and dynamic light scattering, and
calculating the ratio of the polymerised mass to the mean
degree of polymerisation [27].

The two principal moments expressed in our variables
read

P =
∞∑

i=nc

yi, (7)

for the polymer concentration and

M =
∞∑

i=nc

iyi, (8)

for the polymerised mass. We obtain the dynamical equa-
tions for P and M by extracting the first two principal mo-
ments from the full polymer length distribution described
by eq. (5). In the process of deducing the dynamical equa-
tions for the moments, the only approximation we employ
is that we neglect all terms arising from the disintegration
of nuclei, which for early times are negligible in number
anyway, at least in the limit k+

n → 0. See appendix A for
details.

The dynamical equation for the number of polymers
P (t) that we obtain reads

dP (t)
dt

= −k+
f P (t)2 + k−

f [M(t) − (2nc − 1)P (t)]

+k+
n [mtot − M(t)]nc , (9)

and for the time evolution of the polymerised monomeric
mass M(t) we find

dM

dt
= 2

[
(mtot − M(t))k+

e P (t) − k−
e P (t)

]

+k+
b (mtot − M(t))(M(t) + P (t))

+k−
b (2P (t) − M(t))

+nck
+
n (mtot − M(t))nc , (10)

where mtot is the total concentration of monomers in the
system. A detailed derivation of eqs. (9) and (10) from
eqs. (5) and (6) is provided in appendix A. For this general
set of equations the initial polymerised monomeric mass
can have any value between and including 0 and mtot,
i.e., 0 ≤ M(0) ≤ mtot. The same holds true for P (0) and
M(t) ≥ P (t) for all times, where the equality holds only
when all the polymers are critical nuclei.

In the absence of the body evaporation and addition
terms, eqs. (9) and (10) have been compared with kinetic
Monte Carlo simulations that do allow for the disinte-
gration of nuclei [21]. As expected, the time evolution of
the moments obtained from the simulation is in quanti-
tative agreement with eqs. (9) and (10) in the appropri-
ate limit of strongly nucleated polymerisation, justifying
our approximation. With regard to the domain of valid-
ity of eqs. (9) and (10), they produce nonzero and pos-
itive M(∞) and P (∞) only above the so-called critical
concentration of monomers [28]. In the absence of other
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pathways, except end evaporation and addition, the criti-
cal concentration obtained from our kinetic equations has
a simple analogy to that of the thermodynamic theory
of linear self-assembly [28]. However, in the presence of
more complex pathways, the mapping is not so trivial as
the kinetic theory demands the introduction of additional
energy scales associated with the various pathways. For
example, an energy scale for monomer removal or addi-
tion along the backbone of a polymer would be needed to
characterise the body evaporation and addition in addition
to an energy scale associated with the monomer addition
to or removal from the ends of a polymer.

Notice that eqs. (9) and (10) are highly nonlinear of-
fering little hope of exact analytical solution. This implies
that we have not improved the state of affairs significantly
in the context of the various simplifications of the equa-
tions that we have already implemented. Of course, one
may linearise eqs. (9) and (10) and obtain linear solu-
tions, but this is of limited help as a linear solution can
never result in sigmoidal kinetics. Hence, with the aim
to reduce the nonlinearity of the equations but preserve
the most important and generic behaviour of the kinetics
of self-assembly, we employ several additional approxima-
tions. Our first approximation is to restrict our analysis
to the limit k+

n → 0. This way we reduce the degree of
the polynomial, which is essential to obtain an analytical
solution. In addition, we also neglect the polymer recom-
bination k+

f P (t)2 term in eq. (9). By doing so, we break
the reversibility condition and hence do not expect the
system to follow the corresponding law of mass action.
However, earlier studies on nucleated self-assembly have
shown that in the context of the early-time kinetics we
focus attention on, polymer recombination does not play
a significant role and hence can be ignored as in fact we
shall also make plausible below [19]. Indeed, by identifying
the most dominant terms in the dynamical equations for
the polymerisation kinetics, the predicted lag phase has
been shown to be in a quantitative agreement with theo-
retical models, at least in the absence of body evaporation
and addition [19, 20, 23, 24, 29]. This motivates us to do
the same for our reaction pathway, despite it potentially
being inaccurate in the long-time limit.

The steady-state solution of eqs. (9) and (10) sheds
some light on the role of molecular pathways and how our
approximations, i.e., k+

n → 0 and k+
f P 2 = 0, impact upon

the long-time behaviour. In the steady state, the time
derivatives of the two moments are zero and we are left
with algebraic equations. If we define Kf = k+

f /k−
f to be

the fragmentation equilibrium constant, we can switch off
the effect of scission and recombination, at least in equi-
librium, by taking the asymptotic limit Kf = 0. If k+

f = 0
this will be true for any value of k−

f �= 0. Within this ap-
proximation we can compare the effect of end evaporation
and addition and body evaporation and addition explicitly.
In this limit the equilibrium polymerised monomeric mass
for a nucleus size of nc = 2 becomes

M(∞) = mtot −
k−

b + 2k−
e

4k+
b + 2k+

e
. (11)

In the absence of body evaporation and addition, i.e., for
k+

b = k−
b = 0, the polymerised monomeric mass be-

comes M(∞) = mtot − k−
e /k+

e = mtot − K−1
e , where

Ke ≡ k+
e /k−

e . In the absence of body evaporation and ad-
dition, the ratio of the rate constants Ke can be mapped
onto the equilibrium constant used in the thermodynamic
theory of linear self-assembly [28]. In that case, in the
polymerised regime, y1(∞) = K−1

e , remains equal to the
critical concentration. Hence, in this limit the polymerised
monomeric mass is in agreement with the thermodynamic
theory of self-assembly [28]. However, in the presence of
body evaporation and addition pathway the effective elon-
gation constant has to be renormalized to account for the
free energy associated with monomer addition to or re-
moval from the ends and that associated with monomer
addition or removal along the backbone of the polymer.

In the limit Kf → 0 the steady-state number of poly-
mers P and average degree of polymerisation L are given
by

P (∞) =
M(∞)

(2nc − 1)
, (12)

and

L(∞) =
M(∞)
P (∞)

= 2nc − 1 (13)

for all values of k+
b and k−

b . Note that the equilibrium
average degree of polymerisation L(∞) only depends on
the critical nucleus size, nc ≥ 2, not on the concentration.
This, of course, disagrees with the thermodynamic theory
but, as we shall see below, this does not preclude very
large values of L(t) for intermediate times [28]. Similar
results were obtained by Cohen et al. in the absence of
body evaporation and addition [19].

3 Lag time analysis

The steady-state solutions of the moment equations
clearly indicate that our generalized reaction schemes do
not result into the long polymers in the limit of t → ∞
to be expected for nucleated polymerisation. However, as
shown in fig. 2, for intermediate times the mean poly-
mer length overshoots and attains very large values. Also,
fig. 2 shows that at the mean polymer length for very
large and very small values of the recombination rate con-
stant, k+

f = 108, 10−8 Ms−1, the term k+
f P 2 has no effect

on the early-time kinetics for any reasonable value of k+
f .

This justifies our approximation of neglecting the term
representing the contribution of polymer recombination as
in this paper we are mainly interested in comparing the
early-time kinetics of end evaporation and addition and
body evaporation and addition. The early-time kinetics is
characterised by the lag time, i.e., the time intercept of
the tangent at the inflection point of the polymerisation
curve, i.e., M(t) [25]. For the sake of simplicity, we limit
ourselves to strongly nucleated polymerisation, and set
k+

n → 0. This also reduces the degree of polynomial on the
right-hand side of eqs. (9) and (10), enabling us to obtain
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Fig. 2. Time evolution of the mean length of the polymer
L(t) = M(t)/P (t), obtained by numerically solving eqs. (9)
and (10) for two values of the recombination rate k+

f = 108

and 10−8 Ms−1. The remainder of the system parameters are
k+

n = 10−5 s−1, k+
e = 5 × 105 M−1 s−1, k−

e = 10−2 s−1,
k+

b = 5 × 105 M−1 s−1, k−
b = 10−2 s−1, k−

f = 10−4 s−1,

mtot = 10−5 M, M(0) = mtot × 10−4 and P (0) = mtot × 10−6,
where M is moles per liter and s stays for seconds. The values
of the chosen rate constants do not correspond to any partic-
ular experiment. However, the order of magnitude is similar
to the parameters found in the literature of protein polymeri-
sation [18]. The initial conditions are chosen to be small but
nonzero, because of the necessity to seed the polymerisation
process in the limit of k+

n → 0.

analytical solutions. In the limit k+
n → 0, the polymerisa-

tion process has to be seeded, i.e., some initial polymerised
mass, M(0) = P (0) �= 0, has to be provided, otherwise the
system stays in the initial state M(0) = P (0) = 0.

The resulting dynamical equations become, after em-
ploying the approximations and rearranging terms in
eqs. (9) and (10),

dP (t)
dt

= k−
f (M(t) − (2nc − 1)P (t)) , (14)

for the polymer number concentration, and

dM

dt
= −M(t)(α + k+

b M(t)) + P (t)(β − γM(t)), (15)

for the polymerised mass, where we introduce new dy-
namical constants α ≡ k−

b − k+
b mtot, β ≡ 2(k−

b − k−
e ) +

k+
b mtot + 2k+

e mtot and γ ≡ k+
b + 2k+

e . It should be em-
phasized that we define the parameters α, β and γ merely
for notational simplicity and do not associate any physical
meaning to them. Equations (14) and (15) are nonlinear
in nature, hence, the first trivial analysis demands the lin-
earisation of these equations. Researchers have analysed
similar equations for a variety of pathways and obtained
t2 or t3 time dependence for the polymerised mass frac-
tion [30]. However, for our particular choice of molecular
pathways, the resulting linearised equations always yield
simple exponential time dependence that in turn results
into a linear time dependence of early times.

Although the dynamical equations eqs. (14) and (15)
contain the polymer scission term, we can reduce the ef-
fect of polymer scission on the kinetics of the polymerised

Fig. 3. Time evolution of (a) the polymerised mass fraction
M(t)/M(∞) and (b) the polymer concentration P (t)/P (∞)
obtained by numerically solving eqs. (9) and (10) for k+

f =

0 M−1 s−1. The remainder of the system parameters are
k+

n = 10−5 s−1, k+
e = 105 M−1 s−1, k−

e = 10−2 s−1, k+
b =

105 M−1 s−1, k−
b = 10−2 s−1, k−

f = 10−4 s−1, mtot = 10−5 M,

M(0) = mtot×10−5 and P (0) = mtot×10−6, where M is moles
per liter and s stays for seconds. The inset in (b) shows the
early-time behaviour of the number of polymers P (t), which
remains essentially constant during the relaxation of the poly-
merised monomeric mass, M(t), and only relaxes after that.
This figure highlights our claim of separation of time scales
between the time evolution of the polymerised mass fraction
and that of the polymer concentration. See the main text.

monomeric mass, M , by choosing a very small value for
the scission rate constant k−

f . The value of k−
f = 10−4 that

we chose is small enough to diminish the effect of scis-
sion for the early-time kinetics of the polymerised mass,
as we find and also show below that this is true for our
choice of the set of parameters. For this small value of
k−

f , the typical trajectory of the two moments is shown
in fig. 3. We notice that the polymerised mass M evolves
much faster in time than the number density of polymers
P . The inset in fig. 3(b) shows that in the asymptotic
limit of vanishing scission rate k−

f , the lag phase for both
moments is characterised by an approximately equal time
scale. However, after the lag phase, M relaxes to its equi-
librium value much faster than P does. Hence, for the
early-time kinetics of the polymerised monomeric mass,



Eur. Phys. J. E (2017) 40: 65 Page 7 of 12

Fig. 4. Time evolution of (a) the polymerised mass frac-
tion M(t)/M(∞) and (b) the renormalized polymer concen-
tration P (t)/P (∞) obtained by numerically solving eqs. (9)
and (10) (solid curves) for different scission rates k−

f =

1, 10−1, 10−2, 10−3, 10−4 and k+
f = 0 M−1 s−1. The dashed

curves are the asymptotic analytical solutions eqs. (16)
and (17) for vanishing scission rate k−

f in the limit of k+
n → 0,

i.e., strongly nucleated polymerisation. The remainder of the
system parameters are the same as in fig. 3.

the number concentration of polymers remains effectively
constant, i.e., equal to the initial value P (t) = P (0).

Making use of this, we can solve eq. (14) for M(t) for
early times, yielding the explicit solution

k+
b M(t)=

η − σ

2

− η(η − 2k+
b M(0) − σ)

(etη(η+2k+
b M(0)+σ)+η−2k+

b M(0)−σ)
,

(16)

where for the purpose of notational simplicity we define

σ ≡ α + γP (0) and η ≡
√

σ2 + 4βk+
b P (0). In fig. 4 we

show that eq. (16) agrees with the numerical results ob-
tained in the limit k−

f → 0. Below we will analyse the
effect of molecular pathways by calculating the lag time
from eq. (16). For now, the main conclusion is that eq. (16)
predicts sigmoidal kinetics, i.e., a lag phase followed by

exponential growth and subsequent saturation of the so-
lution for M(t).

Next, we solve for P (t) in the long-time limit when
M(t) has achieved its equilibrium value M(∞). For long
times, i.e., post-lag phase of the polymerised mass frac-
tion, P (t) is given by

P (t) =
Λ(e3k−

f t − 1) + 3k−
f P (0)

3k−
f e3k−

f t
, (17)

where Λ = M(∞)(k+
n M(∞)+k−

f −2k+
n mtot)+k+

n m2
tot. No-

tice that for the analytical solution of the number concen-
tration of polymers, the time scale of the evolution of P (t)
depends only on the scission rate constant k−

f . This is due
to our choice of the reaction scheme, where the scission
and recombination affects only the number of polymers. In
contrast, end evaporation and addition and body evapora-
tion and addition only affect the exchange of monomers
between the free monomer pool and the polymer pool.

Having obtained a closed analytical expression for the
time evolution of the polymerised mass, M(t), we can now
calculate the lag time, τlag. This is achieved by calculating
the inflection point or the point of maximum growth rate,
i.e., the time at which the second derivative of eq. (16) is
equal to zero. We then calculate the time intercept of the
tangent at the inflection point, resulting in the analyti-
cal expression for the lag time. In general, for nucleated
polymerisation kinetics the lag time τlag is a linear com-
bination of two terms [24]. These terms represent two im-
portant characteristics of the polymerisation kinetics: the
half-time τ1/2 and apparent growth rate kapp. The half-
time τ1/2 is the time at which the polymerised monomeric
mass is exactly half of its steady-state (long-time) value
and from eq. (16) we find that it is equal to the inflection
point. Furthermore, the apparent growth rate kapp is the
growth rate of the polymerisation curve at the inflection
point (so, the time derivative of M(t) at t = τ1/2).

Hence, we find

τlag = τ1/2 −
1

2kapp
, (18)

where

τ1/2 =
log

(
2η

η+2k+
b M(0)+σ

− 1
)

η
(19)

denotes the half-time and

kapp = − η2

2σ
, (20)

the apparent growth rate.
To investigate the influence of the overall monomer

concentration on the lag time, let us assume that all the
other parameters, i.e., the rate constants, are constant
and do not depend on the monomer concentration. This
also ties in with our assumption that our polymerisation
process is reaction-limited and not diffusion-limited. Let
us first focus on the case k+

b = k+
e and k−

b = k−
e , i.e., which

is true if body evaporation and addition kinetics and end
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evaporation and addition are equally likely. We see that
α = k−

b −k+
b mtot ≈ −k+

b mtot where we have k+
b mtot 	 k−

b
for polymers to exist. The other parameters hence become
β = 2(k−

b − k−
e ) + k+

b mtot + 2k+
e mtot ≈ 3k+

b mtot and
γ = k+

b +2k+
e = 3k+

b ≈ constant, i.e., independent of total
monomer concentration. This further implies that σ =
α + γP (0) ≈ −k+

b mtot, because α ∼ k+
b mtot 	 γP (0) =

3k+
b P (0) as mtot 	 P (0). Finally, the denominator in

the expression for half-time is η =
√

σ2 + 4βk+
b P (0) ≈

√
(k+

b mtot)2 + 12k+
b mtotP (0).

Again, as P (0) � mtot, we infer that η ≈ k+
b mtot.

From eq. (19) the half-time has a logarithmic numera-
tor resulting in a weak dependence of the numerator on
mtot, and effectively we have τ1/2 ∼ η−1 ∼ m−1

tot. Similarly,
kapp = η2/2σ, where η ≈ k+

b mtot, and hence the appar-
ent growth rate scales as kapp ∼ mtot. In fig. 5, we show,
by fitting the concentration dependence of the half-time
eq. (20) on a double logarithmic scale, that our predic-
tions for the power laws are indeed correct. This confirms
that the logarithmic correction is indeed negligible. These
power laws for the half-time and the apparent growth rate
have same exponents as for the case of end evaporation and
addition in the limit of weak scission obtained before [23].

Let us now examine how the half-time and the ap-
parent growth rate depend on the forward rates of the
body evaporation and addition and the end evaporation
and addition pathways, when only one of them is present.
In the absence of end evaporation and addition pathway,
i.e., k+

e = k−
e = 0, we have η ∼ k+

b mtot, as shown above.
This, in combination with the fact that the half-time scales
as τ1/2 ∼ η−1 and that the apparent growth rate scales
as kapp ∼ σ/η−1, where σ ∼ −k+

b mtot, results in the scal-
ing of τ1/2 ∼ (k+

b )−1 and kapp ∼ k+
b . This is confirmed in

fig. 6.
In the absence of body evaporation and addition only

primary nucleation and the end evaporation and addition
pathways are active, in the limit where scission and re-
combination is sufficiently weak. In that limit, our equa-
tions are exactly the same as those presented in earlier
works [23]. From the work of Hong et al., we already
know that for weak scission, both the half-time and the
reciprocal apparent growth rate scale linearly with the to-
tal monomer concentration, which is the same as what
we found for body evaporation and addition [23]. In other
words, from the monomer concentration dependence of the
lag time we cannot distinguish the body from end evapora-
tion and addition. However, differences do show up when
considering the dependence of the lag time on the forward
rate constants. For the end evaporation and addition, the
half-time and the reciprocal apparent growth rate scale as
the square root of the forward rate constant of monomer
addition, i.e.,

√
k+

e [23], which contrasts with what we
found for body evaporation and addition. For the latter we
found a linear scaling with the forward rate constant.

In conclusion, although the scaling of the lag time with
the total monomer concentration is the same for both
pathways, there is a difference in the scaling with the for-

Fig. 5. (a) The half-time and (b) the apparent growth rate
are shown on a double logarithmic scale as a function of the
total monomer concentration for the case when bulk evapora-
tion and addition pathway is dominant. The half-time scales
as an effective power law with the total monomer concentra-
tion, as is clear from the double logarithmic presentation. The
circles are the numerical value of the half-time and the ap-
parent growth rate from eqs. (19) and (20), and the contin-
uous line is a fit to that data, whose slope provides us with
the power law exponent. The rest of the system parameters
are k+

n = 10−5 s−1, k+
e = 5 × 104 M−1 s−1, k−

e = 10−2 s−1,
k+

b = 5 × 104 M−1 s−1, k−
b = 10−2 s−1, k−

f = 10−4 s−1,

mtot = 10−5 M, M(0) = mtot × 10−4 and P (0) = mtot × 10−6,
where M is moles per liter and s stays for seconds.

ward rate constants, or, equivalently, with the equilibrium
constants for the two pathways. This in principle provides
us with a probe to inspect the existence of body evapora-
tion and addition pathway in the polymerisation process,
at least if we knew how to control them.

4 Discussion and conclusions

In our model calculations, we compare predictions based
on the newly discovered kinetic pathway of body evapora-
tion and addition with the well-studied pathway of end
evaporation and addition, in the context of strongly nu-
cleated reversible polymerisation. To be able to do that,
we rely on a kinetic scheme that includes a third pathway,
known as scission and recombination, that in the end we
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Fig. 6. (a) The half-time and (b) the apparent growth rate are
shown on a double logarithmic scale as a function of the for-
ward rate constant of monomer insertion anywhere along the
polymer back but the ends, in the absence of the end evapo-
ration and addition pathway. The circles are numerical values
of the half-time and the apparent growth rate from eqs. (19)
and (20), and the continuous line is a fit to that data. The
remainder of the system parameters are the same as in fig. 5.

switch off asymptotically [17, 18]. The presence of this
third pathway is needed solely for mathematical reasons,
to achieve our purpose. In practice, we cannot exclude
the presence of scission and recombination, and our set
of equations, which focus on the two moments of the full
distribution, allow for that.

The way the scission and recombination and end
evaporation and addition pathways are implemented in
the literature creates a conundrum, in which a process
where a monomer is removed from the end can either
be seen as a polymer scission or as an end evaporation
event [18, 23]. To remedy this, we have implemented
the scission and recombination pathway for strongly
nucleated linear reversible polymerisation in such a way
that a polymer can break, resulting into the formation of
two polymers of size greater than or equal to the critical
nucleus, which in our model has to be bigger than or equal
to a dimer. We modelled polymer recombination, so the
merging of two short polymers into a longer one the same
way. Also we exclude the case nc = 1. This prescription
prevents the scission and recombination pathway from
interfering with the end evaporation and addition. So

in our prescription scission and recombination does not
directly affect the monomer pool.

In our view, our alternative implementation of the two
pathways is the more sensible one, because the detachment
of a monomer is inherently different from the breaking
of a polymer. Indeed, the latter process should strongly
depend on the length of the polymer, whilst the former
arguably should not provide the polymer is sufficiently
long [31]. In addition, our implementation of the scis-
sion and recombination pathway reproduces the thermo-
dynamically consistent law of mass action for the amount
of polymerised material under conditions of equilibrium
and in the presence of the end evaporation and addition
pathway. The amount of polymerised material of course is
only one of the moments of the full length distribution. As
for the other moments, such as the number of polymers
in solution, they suffer from thermodynamically inconsis-
tent long-time behaviour, a drawback that we share with
previous studies [10,20,23].

However, if we focus on the short-time behaviour
of the reversible polymerisation reactions, we could ar-
gue, as in fact is tacitly done in the literature, that
the long-time behaviour of the system is inconsequen-
tial [18,23]. Indeed, many thermodynamically inconsistent
pathways have been shown to be in quantitative agree-
ment with experimental findings regarding the early-time
kinetics, which is the prime focus of almost all experimen-
tal works [19, 20, 23, 24, 29]. For this reason, we also focus
on the early-time kinetics, when comparing body and end
evaporation and addition, in the limit of asymptotically
weak scission. Because polymer recombination has been
shown theoretically not to substantially alter the early-
time polymerisation kinetics, we suppress the recombina-
tion step completely for mathematical expedience in order
to obtain closed-form solutions, in the final steps of our
analysis [19].

In this limit, we find that the typical polymerisation
kinetics of body evaporation and addition is characterised
by a separation of time scales between the polymerised
monomeric mass M and the polymer number concentra-
tion P . This is obvious from the difference in the lag times
for these two quantities, i.e., the time scales required to
get a substantial growth. Such separation of time scales
has also been found for the end evaporation and addition
pathway in combination with weak polymer scission and
no recombination albeit that it is not as strong [24]. To
illustrate this, in fig. 7, we show the polymerised mass
fraction and the polymer concentration as a function of
time, where we vary the forward rate of body addition at
a fixed value of the forward rate of end addition. We cover
the full spectrum from predominant body to predominant
end evaporation and addition.

Comparing fig. 7(a) and (b), it is clear that the separa-
tion of time scales is many orders of magnitude larger for
body evaporation and addition than that for end evapora-
tion and addition. Indeed, the polymerised mass fraction
evolves much faster in time than the number of polymers
does, if the body evaporation and addition pathway is ac-
tive. It is this vast separation of time scales that allows us
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Fig. 7. Time evolution of (a) the polymerised mass fraction
M(t)/M(∞) and (b) the renormalized polymer concentration
P (t)/P (∞) obtained by numerically solving eqs. (9) and (10)
for different scission rates k+

b = 5 × 10, 5 × 102, 5 × 103, 5 ×
104, 5 × 105 M−1 s−1 and k+

f = 0 M−1 s−1. The remainder of
the system parameters are the same as in fig. 3.

to obtain first-order perturbative solutions to the two mo-
ment equations that are in quantitative agreement with
numerical results for the vanishing scission rate constant.

Our perturbative solutions for the polymerised mass
fraction and the polymer concentration are sigmoidal as a
function of time and provide us with the closed-form so-
lution for the lag time. The lag time associated with the
polymerised mass fraction is the one that is experimentally
readily accessible, and hence we focus on that. We find,
within the limit where it is valid, that the lag time pro-
duces only a weak dependence on the initial polymerised
monomeric mass. This contrasts with other studies where
they do not include body evaporation and addition in the
reaction scheme, and is a result of the extremely fast ki-
netics connected with that pathway [8,10,23,24].

In the usual definition of the lag time, it takes the
form of the sum of a half-time τ1/2 and a reciprocal of an
apparent growth rate kapp [18]. For body evaporation and
addition we find the same linear scaling of the half-time
and the reciprocal apparent growth rate with the total
monomer concentration, mtot, as was found in the liter-
ature for the end evaporation and addition [23]. In fact,
for the bulk evaporation and addition pathway it is the

product k+
b mtot that dictates the scaling of the lag time,

implying that both time scales are also linearly dependent
on the forward rate for the body addition, k+

b . In contrast,
for the end evaporation and addition pathway both time
scales are proportional to the square root of the forward
rate constant of the end addition,

√
k+

e [23].
It seems that the newly proposed pathway, although

it speeds up the growth of the polymerised mass by pro-
viding a larger number of places to insert or remove a
monomer from a polymer, does not affect the dependence
of the lag time on the total monomer concentration. How-
ever, it does affect how the relevant forward rate constant
influences that time scale. This means that to distinguish
the end from the body evaporation and addition experi-
mentally by probing the dependence of the lag time on the
system parameters, we would need to be able to control
this quantity. This is not trivial. It may well be that highly
specialised techniques, such as those used in ref. [22], are
required to actually observe it. In fact, this may even be
the reason why it had not been considered before.
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Appendix A. Derivation of moment
equations from the discrete master equation

We start by writing down the discrete master equation,
eq. (5), for the reaction schemes described in the main
text. Next, we define the principal moments, the number
of polymers P and the polymerised monomeric mass M ,
eqs. (7) and (8).

After substituting eq. (7) in eq. (8), the equation for
the number of polymers P is given by

dP (t)
dt

=
∞∑

i=nc

k+
n x(t)ncδi,nc

+ 2k+
e

∞∑

i=nc

x(t)yi−1(t)

−2k+
e x(t)

∞∑

i=nc

yi(t) + 2k−
e

∞∑

i=nc

yi+1(t)

−2k−
e

∞∑

i=nc

yi(t) +
∞∑

i=nc

k+
b (i − 2)yi−1(t)

−
∞∑

i=nc

k+
b (i − 1)x(t)yi(t) +

∞∑

i=nc

k−
b (i − 1)yi+1(t)

−
∞∑

i=nc

k−
b (i − 2)yi(t) −

∞∑

i=nc

k−
f (i − 2nc + 1)yi(t)
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+ 2k−
f

∞∑

i=nc

∞∑

j=i+nc

yj(t) + k+
f

∞∑

i=nc

∑

k+l=i

yk(t)yl(t)

− 2k+
f

∞∑

i=nc

yi(t)
∞∑

j=nc

yj . (A.1)

To obtain a kinetic equation without any summation
signs, we collect and simplify the equation term by term.
Let us start with the terms accounting for the monomer
addition at the end

∞∑

i=nc

yi−1 −
∞∑

i=nc

yi =
∞∑

i=nc−1

yi −
∞∑

i=nc

yi = ync−1 = 0.

(A.2)
Notice that ync−1 = 0, because the smallest stable poly-

mer is the critical nucleus of size nc. Similarly for end
evaporation

∞∑

i=nc

yi+1 −
∞∑

i=nc

yi =
∞∑

i=nc+1

yi −
∞∑

i=nc

yi = −ync
. (A.3)

The analysis in the main text assumes the strongly nucle-
ated polymerisation, i.e., k+

n → 0. In this limit the critical
nuclei are highly unstable and can be neglected.

For terms six and seven in eq. (A.1) that represent
monomer addition on the polymer backbone, we obtain

k+
b

∞∑

i=nc

((i − 2)yi−1 − (i − 1)yi) =

k+
b

∞∑

i=nc−1

(i − 1)yi − k+
b

∞∑

i=nc

(i − 1)yi = 0. (A.4)

Similarly, terms eight and nine in eq. (A.1) accounting for
monomer removal from the polymer backbone, simplify to

∞∑

i=nc

(i − 1)yi+1 −
∞∑

i=nc

(i − 2)yi =
∞∑

i=nc

(i − 1)yi+1

−
∞∑

i=nc−1

(i − 1)yi = −(nc − 1)ync
. (A.5)

Once again, under the assumption of strongly nucleated
polymerisation, we neglect ync

.
The contribution from polymer scission can be rewrit-

ten in terms of a theta function as

−
∞∑

i=nc

(i − 2nc + 1)yi + 2
∞∑

i=nc

∞∑

j=nc

yjΘ(i − j − nc) =

−
∞∑

i=nc

(i − 2nc + 1)yi + 2
∞∑

i=nc

(1 + j − 2nc)yj =

(M − (2nc − 1)P ), (A.6)

and the contribution of polymeric recombination is

∞∑

k=nc

∞∑

l=nc

ykyl − 2
∞∑

i=nc

yi

∞∑

j=nc

yj =

( ∞∑

k=nc

yk

) ( ∞∑

l=nc

yl

)

−2

( ∞∑

i=nc

yi

)⎛

⎝
∞∑

j=nc

yj

⎞

⎠ = −P 2. (A.7)

This gives us the following equation for the number of
polymers P :

dP (t)
dt

= −k+
f P (t)2 + k−

f (M(t) − (2nc − 1)P (t))

+k+
n x(t)nc . (A.8)

For the polymerised monomeric mass M(t), the evolution
equation is

dM(t)
dt

=
∞∑

i=nc

k+
n ix(t)ncδi,nc

+ 2k+
e x(t)

∞∑

i=nc

iyi−1(t)

−2k+
e x(t)

∞∑

i=nc

iyi(t) + 2k−
e

∞∑

i=nc

iyi+1(t)

−2k−
e

∞∑

i=nc

iyi(t) +
∞∑

i=nc

k+
b i(i − 2)yi−1(t)

−
∞∑

i=nc

k+
b i(i − 1)x(t)yi(t)+

∞∑

i=nc

k−
b i(i − 1)yi+1(t)

−
∞∑

i=nc

k−
b i(i − 2)yi(t)−

∞∑

i=nc

k−
f i(i − 2nc + 1)yi(t)

+2k−
f

∞∑

i=nc

∞∑

j=i+nc

iyj(t)+k+
f

∞∑

i=nc

∑

k+l=i

iyk(t)yl(t)

−2k+
f

∞∑

i=nc

iyi(t)
∞∑

j=nc

yj(t). (A.9)

The terms involving the monomer addition at the ends are

2x(t)
∞∑

i=nc

i (yi−1(t) − yi(t)) =

2

( ∞∑

i=nc−1

(i + 1)yi −
∞∑

i=nc

iyi

)
= 2x(t)P (t), (A.10)

and the term arising from the monomer removal at the
ends are

2
∞∑

i=nc

i (yi+1(t) − yi(t)) =

2

( ∞∑

i=nc+1

(i−1)yi−
∞∑

i=nc

iyi

)
=2(−P (t)−ncync

), (A.11)

where we neglect the contribution ncync
.
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Next the terms contributed by the monomer addition
in the bulk becomes

∞∑

i=nc

(i(i − 2)yi−1 − i(i − 1)yi) =

( ∞∑

i=nc−1

(i + 1)(i − 1)yi −
∞∑

i=nc

i(i − 1)yi

)

=

( ∞∑

i=nc

(i2 − 1)yi +
∞∑

i=nc

iyi −
∞∑

i=nc

i2yi

)

= x(t)(M(t) − P (t)), (A.12)

and the terms from the monomer removal from the bulk
are

( ∞∑

i=nc

i(i − 1)yi+1 −
∞∑

i=nc

i(i − 2)yi

)
=

( ∞∑

i=nc+1

(i − 1)(i − 2)yi −
∞∑

i=nc

i(i − 2)yi

)

= −
∞∑

i=nc+1

(i − 2)yi = (−ncync
+ 2P (t) − M(t)).

(A.13)

This completes our closure of the discrete master equation
to obtain moment equations, that are given by

dP (t)
dt

= −k+
f P (t)2 + k−

f (M(t) − (2nc − 1)P (t))

+k+
n x(t)nc , (A.14)

and

dM

dt
= 2

(
x(t)k+

e P (t) − k−
e P (t)

)
+ k+

b x(t)(M(t) + P (t))

+k−
b (2P (t) − M(t)) + nck

+
n x(t)nc . (A.15)
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