150 research outputs found

    Expressive Knowledge Resources in Probabilistic Models

    Get PDF
    Understanding large collections of unstructured documents remains a persistent problem. Users need to understand the themes of a corpus and to explore documents of interest. Topic models are a useful and ubiquitous tool to discover the main themes (namely topics) of the corpus. Topic models have been successfully applied in natural language processing, computer vision, information retrieval, cognitive science, etc. However, the discovered topics are not always meaningful: some topics confuse two or more themes into one topic; two different topics can be near duplicates; and some topics make no sense at all. Adding knowledge resources into topic models can improve the topics. However, how to encode knowledge into topic models and where to find these knowledge resources remain two scientific challenges. To address these problems, this thesis presents tree-based topic models to encode prior knowledge, a mechanism incorporating knowledge from untrained users, a polylingual tree-based topic model based on existing dictionaries as knowledge resources, an exploration of regularizing spectral methods to encode prior knowledge into topic models, and a model for automatically building hierarchies of prior knowledge for topic models. To encode knowledge resources into topic models, we first present tree-based topic models, where correlations between word types are modeled as a prior tree and applied to topic models. We also develop more efficient inference algorithms for tree- based topic models. Experiments on multiple corpora show that efficiency is greatly improved on different number of topics, number of correlations and vocabulary size. Because users decide whether the topics are useful or not, users' feedback is necessary for effective topic modeling. We thus propose a mechanism for giving normal users a voice to topic models by encoding users' feedback as correlations between word types into tree-based topic models. This framework, interactive topic modeling (ITM), allows untrained users to encode their feedback easily and iteratively into the topic models. We validate the framework both with simulated and real users and discuss strategies for improving the user experience to adapt models to what users need. Existing knowledge resources such as dictionaries can also improve the model. We propose polylingual tree-based topic models based on bilingual dictionaries and apply this model to domain adaptation for statistical Machine Translation. We derive three different inference schemes and evaluate the efficacy of our model on a Chinese to English translation system, and obtain up to 1.2 BLEU improvement over the machine translation baseline. This thesis further explores an alternative way--regularizing spectral methods for topic models--to encode prior knowledge into topic models. Spectral methods offer scalable alternatives to Markov chain Monte Carlo and expectation maximization. However, these new methods lack the priors that are associated with probabilistic models. We examine Arora et al.'s anchor algorithm for topic models and encode prior knowledge by regularizing the anchor algorithm to improve the interpretability and generalizability of topic models. Because existing knowledge resources are limited and because obtaining the knowledge from users is expensive and time-consuming, automatic techniques should also be considered to extract knowledge from the corpus. This thesis further presents a Bayesian hierarchical clustering technique with the Beta coalescent, which provides a possible way to build up the prior tree automatically. Because of its computational complexity, we develop new sampling schemes using sequential Monte carlo and Dirichlet process mixture models, which render the inference practical and efficient. This thesis explores sources of prior knowledge, presents different ways to encode these expressive knowledge resources into probabilistic topic models, and also applies these models in translation domain adaptation. We also discuss further extensions in a bigger picture of interactive machine learning techniques and domain adaptation for downstream tasks

    Models, Inference, and Implementation for Scalable Probabilistic Models of Text

    Get PDF
    Unsupervised probabilistic Bayesian models are powerful tools for statistical analysis, especially in the area of information retrieval, document analysis and text processing. Despite their success, unsupervised probabilistic Bayesian models are often slow in inference due to inter-entangled mutually dependent latent variables. In addition, the parameter space of these models is usually very large. As the data from various different media sources--for example, internet, electronic books, digital films, etc--become widely accessible, lack of scalability for these unsupervised probabilistic Bayesian models becomes a critical bottleneck. The primary focus of this dissertation is to speed up the inference process in unsupervised probabilistic Bayesian models. There are two common solutions to scale the algorithm up to large data: parallelization or streaming. The former achieves scalability by distributing the data and the computation to multiple machines. The latter assumes data come in a stream and updates the model gradually after seeing each data observation. It is able to scale to larger datasets because it usually takes only one pass over the entire data. In this dissertation, we examine both approaches. We first demonstrate the effectiveness of the parallelization approach on a class of unsupervised Bayesian models--topic models, which are exemplified by latent Dirichlet allocation (LDA). We propose a fast parallel implementation using variational inference on the MapRe- duce framework, referred to as Mr. LDA. We show that parallelization enables topic models to handle significantly larger datasets. We further show that our implementation--unlike highly tuned and specialized implementations--is easily extensible. We demonstrate two extensions possible with this scalable framework: 1) informed priors to guide topic discovery and 2) extracting topics from a multilingual corpus. We propose polylingual tree-based topic models to infer topics in multilingual corpora. We then propose three different inference methods to infer the latent variables. We examine the effectiveness of different inference methods on the task of machine translation in which we use the proposed model to extract domain knowledge that considers both source and target languages. We apply it on a large collection of aligned Chinese-English sentences and show that our model yields significant improvement on BLEU score over strong baselines. Other than parallelization, another approach to deal with scalability is to learn parameters in an online streaming setting. Although many online algorithms have been proposed for LDA, they all overlook a fundamental but challenging problem-- the vocabulary is constantly evolving over time. To address this problem, we propose an online LDA with infinite vocabulary--infvoc LDA. We derive online hybrid inference for our model and propose heuristics to dynamically order, expand, and contract the set of words in our vocabulary. We show that our algorithm is able to discover better topics by incorporating new words into the vocabulary and constantly refining the topics over time. In addition to LDA, we also show generality of the online hybrid inference framework by applying it to adaptor grammars, which are a broader class of models subsuming LDA. With proper grammar rules, it simplifies to the exact LDA model, however, it provides more flexibility to alter or extend LDA with different grammar rules. We develop online hybrid inference for adaptor grammar, and show that our method discovers high-quality structure more quickly than both MCMC and variational inference methods

    Scalable Cross-lingual Document Similarity through Language-specific Concept Hierarchies

    Full text link
    With the ongoing growth in number of digital articles in a wider set of languages and the expanding use of different languages, we need annotation methods that enable browsing multi-lingual corpora. Multilingual probabilistic topic models have recently emerged as a group of semi-supervised machine learning models that can be used to perform thematic explorations on collections of texts in multiple languages. However, these approaches require theme-aligned training data to create a language-independent space. This constraint limits the amount of scenarios that this technique can offer solutions to train and makes it difficult to scale up to situations where a huge collection of multi-lingual documents are required during the training phase. This paper presents an unsupervised document similarity algorithm that does not require parallel or comparable corpora, or any other type of translation resource. The algorithm annotates topics automatically created from documents in a single language with cross-lingual labels and describes documents by hierarchies of multi-lingual concepts from independently-trained models. Experiments performed on the English, Spanish and French editions of JCR-Acquis corpora reveal promising results on classifying and sorting documents by similar content.Comment: Accepted at the 10th International Conference on Knowledge Capture (K-CAP 2019
    • …
    corecore